7、动态保活Worker工作池设计
最后更新于:2022-04-02 08:15:54
[TOC]
## 7、动态保活Worker工作池设计
### 一、我们如何知道一个Goroutine已经死亡?
实际上,Go语言并没有给我们暴露如何知道一个Goroutine是否存在的接口,如果要证明一个Go是否存在,可以在子Goroutine的业务中,定期写向一个keep live的Channel,然后主Goroutine来发现当前子Go的状态。Go语言在对于Go和Go之间没有像进程和线程一样有强烈的父子、兄弟等关系,每个Go实际上对于调度器都是一个独立的,平等的执行流程。
>PS: 如果你是监控子线程、子进程的死亡状态,就没有这么简单了,这里也要感谢go的调度器给我们提供的方便,我们既然用Go,就要基于Go的调度器来实现该模式。
那么,我们如何做到一个Goroutine已经死亡了呢?
#### 子Goroutine
可以通过给一个被监控的Goroutine添加一个`defer` ,然后`recover()` 捕获到当前Goroutine的异常状态,最后给主Goroutine发送一个死亡信号,通过`Channel`。
#### 主Goroutine
在`主Goroutine`上,从这个`Channel`读取内容,当读到内容时,就重启这个`子Goroutine`,当然`主Goroutine`需要记录`子Goroutine`的`ID`,这样也就可以针对性的启动了。
### 二、代码实现
我们这里以一个工作池的场景来对上述方式进行实现。
`WorkerManager`作为`主Goroutine`, `worker`作为子`Goroutine`
> WorkerManager
```go
type WorkerManager struct {
//用来监控Worker是否已经死亡的缓冲Channel
workerChan chan *worker
// 一共要监控的worker数量
nWorkers int
}
//创建一个WorkerManager对象
func NewWorkerManager(nworkers int) *WorkerManager {
return &WorkerManager{
nWorkers:nworkers,
workerChan: make(chan *worker, nworkers),
}
}
//启动worker池,并为每个Worker分配一个ID,让每个Worker进行工作
func (wm *WorkerManager)StartWorkerPool() {
//开启一定数量的Worker
for i := 0; i < wm.nWorkers; i++ {
i := i
wk := &worker{id: i}
go wk.work(wm.workerChan)
}
//启动保活监控
wm.KeepLiveWorkers()
}
//保活监控workers
func (wm *WorkerManager) KeepLiveWorkers() {
//如果有worker已经死亡 workChan会得到具体死亡的worker然后 打出异常,然后重启
for wk := range wm.workerChan {
// log the error
fmt.Printf("Worker %d stopped with err: [%v] \n", wk.id, wk.err)
// reset err
wk.err = nil
// 当前这个wk已经死亡了,需要重新启动他的业务
go wk.work(wm.workerChan)
}
}
```
>worker
```go
type worker struct {
id int
err error
}
func (wk *worker) work(workerChan chan<- *worker) (err error) {
// 任何Goroutine只要异常退出或者正常退出 都会调用defer 函数,所以在defer中想WorkerManager的WorkChan发送通知
defer func() {
//捕获异常信息,防止panic直接退出
if r := recover(); r != nil {
if err, ok := r.(error); ok {
wk.err = err
} else {
wk.err = fmt.Errorf("Panic happened with [%v]", r)
}
} else {
wk.err = err
}
//通知 主 Goroutine,当前子Goroutine已经死亡
workerChan <- wk
}()
// do something
fmt.Println("Start Worker...ID = ", wk.id)
// 每个worker睡眠一定时间之后,panic退出或者 Goexit()退出
for i := 0; i < 5; i++ {
time.Sleep(time.Second*1)
}
panic("worker panic..")
//runtime.Goexit()
return err
}
```
### 三、测试
>main
```go
func main() {
wm := NewWorkerManager(10)
wm.StartWorkerPool()
}
```
结果:
```bash
$ go run workmanager.go
Start Worker...ID = 2
Start Worker...ID = 1
Start Worker...ID = 3
Start Worker...ID = 4
Start Worker...ID = 7
Start Worker...ID = 6
Start Worker...ID = 8
Start Worker...ID = 9
Start Worker...ID = 5
Start Worker...ID = 0
Worker 9 stopped with err: [Panic happened with [worker panic..]]
Worker 1 stopped with err: [Panic happened with [worker panic..]]
Worker 0 stopped with err: [Panic happened with [worker panic..]]
Start Worker...ID = 9
Start Worker...ID = 1
Worker 2 stopped with err: [Panic happened with [worker panic..]]
Worker 5 stopped with err: [Panic happened with [worker panic..]]
Worker 4 stopped with err: [Panic happened with [worker panic..]]
Start Worker...ID = 0
Start Worker...ID = 2
Start Worker...ID = 4
Start Worker...ID = 5
Worker 7 stopped with err: [Panic happened with [worker panic..]]
Worker 8 stopped with err: [Panic happened with [worker panic..]]
Worker 6 stopped with err: [Panic happened with [worker panic..]]
Worker 3 stopped with err: [Panic happened with [worker panic..]]
Start Worker...ID = 3
Start Worker...ID = 6
Start Worker...ID = 8
Start Worker...ID = 7
...
...
```
我们会发现,无论子Goroutine是因为 panic()异常退出,还是Goexit()退出,都会被主Goroutine监听到并且重启。主要我们就能够起到保活的功能了. 当然如果线程死亡?进程死亡?我们如何保证? 大家不用担心,我们用Go开发实际上是基于Go的调度器来开发的,进程、线程级别的死亡,会导致调度器死亡,那么我们的全部基础框架都将会塌陷。那么就要看线程、进程如何保活啦,不在我们Go开发的范畴之内了。
';