(2)_图像分类与KNN

最后更新于:2022-04-01 14:21:37

作者: [寒小阳](http://blog.csdn.net/han_xiaoyang?viewmode=contents) 时间:2015年11月。 出处:[http://blog.csdn.net/han_xiaoyang/article/details/49949535](http://blog.csdn.net/han_xiaoyang/article/details/49949535) 声明:版权所有,转载请注明出处,谢谢 ### 1. 图像分类问题 这是人每天自然而然会做的事情,普通到大部分时候,我们都感知不到我们在完成一个个这样的任务。早晨起床洗漱,你要看看洗漱台一堆东西中哪个是杯子,哪个是你的牙刷;吃早餐的时候你要分辨食物和碗碟… 抽象一下,对于一张输入的图片,要判定它属于给定的一些**标签/类别**中的哪一个。看似很简单的一个问题,这么多年却一直是计算机视觉的一个核心问题,应用场景也很多。它的重要性还体现在,其实其他的一些计算机视觉的问题(比如说物体定位和识别、图像内容分割等)都可以基于它去完成。 咱们举个例子从机器学习的角度描述一下这个问题^_^ 计算机拿到一张图片(如下图所示),然后需要给出它对应{猫,狗,帽子,杯子}4类的概率。人类是灰常牛逼的生物,我们一瞥就知道这货是猫。然而对计算机而言,他们是没办法像人一样『看』到整张图片的。对它而言,这是一个3维的大矩阵,包含248*400个像素点,每个像素点又有红绿蓝(RGB)3个颜色通道的值,每个值在0(黑)-255(白)之间,计算机就需要根据这248 * 400 * 3=297600个数值去判定这货是『猫』 ![猫图像=>矩阵](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-03-16_56e90acf49fb7.png "") #### 1.1 图像识别的难点 图像识别看似很直接。但实际上包含很多挑战,人类可是经过数亿年的进化才获得如此强大的大脑,对于各种物体有着精准的视觉理解力。总体而言,我们想『教』会计算机去认识一类图,会有下面这样一些困难: - **视角不同**,每个事物旋转或者侧视最后的构图都完全不同 - **尺寸大小不统一**,相同内容的图片也可大可小 - **变形**,很多东西处于特殊的情形下,会有特殊的摆放和形状 - **光影等干扰/幻象** - **背景干扰** - **同类内的差异(比如椅子有靠椅/吧椅/餐椅/躺椅…)** ![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-03-16_56e90acf72d01.png) #### 1.2 识别的途径 首先,大家想想就知道,这个算法并不像『对一个数组排序』或者『求有向图的最短路径』,我们没办法提前制定一个流程和规则去解决。定义『猫』这种动物本身就是一件很难的事情了,更不要说去定义一只猫在图像上的固定表现形式。所以我们寄希望于机器学习,使用`『Data-driven approach/数据驱动法』`来做做尝试。简单说来,就是对于每个类别,我们都找一定量的图片数据,『喂』给计算机,让它自己去『学习和总结』每一类的图片的特点。对了,这个过程和小盆友学习新鲜事物是一样一样的。『喂』给计算机学习的图片数据就和下图的猫/狗/杯子/帽子一样: ![Data-driven approach](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-03-16_56e90acf8cc40.jpg "") #### 1.3 机器学习解决图像分类的流程/Pipeline 整体的流程和普通机器学习完全一致,简单说来,也就下面三步: - **输入**:我们的给定K个类别的N张图片,作为计算机学习的训练集 - **学习**:让计算机逐张图片地『观察』和『学习』 - **评估**:就像我们上学学了东西要考试检测一样,我们也得考考计算机学得如何,于是我们给定一些计算机不知道类别的图片让它判别,然后再比对我们已知的正确答案。 ### 2. 最近邻分类器(Nearest Neighbor Classifier) 先从简单的方法开始说,先提一提**最近邻分类器/Nearest Neighbor Classifier**,不过事先申明,它和深度学习中的卷积神经网/Convolutional Neural Networks其实一点关系都没有,我们只是从基础到前沿一点一点推进,最近邻是图像识别一个相对简单和基础的实现方式。 #### 2.1 CIFAR-10 [CIFAR-10](http://www.cs.toronto.edu/~kriz/cifar.html)是一个非常常用的图像分类数据集。数据集包含60000张32*32像素的小图片,每张图片都有一个类别标注(总共有10类),分成了50000张的训练集和10000张的测试集。如下是一些图片示例: ![CIFAR-10例子](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-03-16_56e90acfaf106.jpg "") 上图中左边是十个类别和对应的一些示例图片,右边是给定一张图片后,根据像素距离计算出来的,最近的10张图片。 #### 2.2 基于最近邻的简单图像类别判定 假如现在用CIFAR-10数据集做训练集,判断一张未知的图片属于CIFAR-10中的哪一类,应该怎么做呢。一个很直观的想法就是,既然我们现在有每个像素点的值,那我们就根据输入图片的这些值,计算和训练集中的图片距离,找最近的图片的类别,作为它的类别,不就行了吗。 恩,想法很直接哈,这就是『最近邻』的思想。偷偷说一句,这种直接的做法在图像识别中,其实效果并不是特别好。比如上图是按照这个思想找的最近邻,其实只有3个图片的最近邻是正确的类目。 即使这样,作为最基础的方法,我们还是来实现一下吧。我们需要一个图像距离评定准则,比如最简单的方式就是,比对两个图像像素向量之间的l1距离(也叫曼哈顿距离/cityblock距离),公式如下: d1(I1,I2)=∑p∣∣Ip1−Ip2∣∣ 其实就是计算了所有像素点之间的差值,然后做了加法,直观的理解如下图: ![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-03-16_56e90acfcdcca.png) 我们先把数据集读进内存: ~~~ #! /usr/bin/env python #coding=utf-8 import os import sys import numpy as np def load_CIFAR_batch(filename): """ cifar-10数据集是分batch存储的,这是载入单个batch @参数 filename: cifar文件名 @r返回值: X, Y: cifar batch中的 data 和 labels """ with open(filename, 'r') as f: datadict=pickle.load(f) X=datadict['data'] Y=datadict['labels'] X=X.reshape(10000, 3, 32, 32).transpose(0,2,3,1).astype("float") Y=np.array(Y) return X, Y def load_CIFAR10(ROOT): """ 读取载入整个 CIFAR-10 数据集 @参数 ROOT: 根目录名 @return: X_train, Y_train: 训练集 data 和 labels X_test, Y_test: 测试集 data 和 labels """ xs=[] ys=[] for b in range(1,6): f=os.path.join(ROOT, "data_batch_%d" % (b, )) X, Y=load_CIFAR_batch(f) xs.append(X) ys.append(Y) X_train=np.concatenate(xs) Y_train=np.concatenate(ys) del X, Y X_test, Y_test=load_CIFAR_batch(os.path.join(ROOT, "test_batch")) return X_train, Y_train, X_test, Y_test # 载入训练和测试数据集 X_train, Y_train, X_test, Y_test = load_CIFAR10('data/cifar10/') # 把32*32*3的多维数组展平 Xtr_rows = X_train.reshape(X_train.shape[0], 32 * 32 * 3) # Xtr_rows : 50000 x 3072 Xte_rows = X_test.reshape(X_test.shape[0], 32 * 32 * 3) # Xte_rows : 10000 x 3072 ~~~ 下面我们实现最近邻的思路: ~~~ class NearestNeighbor: def __init__(self): pass def train(self, X, y): """ 这个地方的训练其实就是把所有的已有图片读取进来 -_-|| """ # the nearest neighbor classifier simply remembers all the training data self.Xtr = X self.ytr = y def predict(self, X): """ 所谓的预测过程其实就是扫描所有训练集中的图片,计算距离,取最小的距离对应图片的类目 """ num_test = X.shape[0] # 要保证维度一致哦 Ypred = np.zeros(num_test, dtype = self.ytr.dtype) # 把训练集扫一遍 -_-|| for i in xrange(num_test): # 计算l1距离,并找到最近的图片 distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1) min_index = np.argmin(distances) # 取最近图片的下标 Ypred[i] = self.ytr[min_index] # 记录下label return Ypred nn = NearestNeighbor() # 初始化一个最近邻对象 nn.train(Xtr_rows, Y_train) # 训练...其实就是读取训练集 Yte_predict = nn.predict(Xte_rows) # 预测 # 比对标准答案,计算准确率 print 'accuracy: %f' % ( np.mean(Yte_predict == Y_test) ) ~~~ 最近邻的思想在CIFAR上得到的准确度为**38.6%**,我们知道10各类别,我们随机猜测的话准确率差不多是1/10=10%,所以说还是有识别效果的,但是显然这距离人的识别准确率(94%)实在是低太多了,不那么实用。 #### 2.3 关于最近邻的距离准则 我们这里用的距离准则是l1距离,实际上除掉l1距离,我们还有很多其他的距离准则。 - 比如说l2距离(也就是大家熟知的欧氏距离)的计算准则如下: d2(I1,I2)=∑p(Ip1−Ip2)2‾‾‾‾‾‾‾‾‾‾‾‾‾‾√ - 比如余弦距离计算准则如下: 1−I1⋅I2||I1||⋅||I2|| 更多的距离准则可以参见[scipy相关计算页面](http://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.spatial.distance.pdist.html). ### 3. K最近邻分类器(K Nearest Neighbor Classifier) 这是对最近邻的思想的一个调整。其实我们在使用最近邻分类器分类,扫描CIFAR训练集的时候,会发现,有时候不一定距离最近的和当前图片是同类,但是最近的一些里有很多和当前图片是同类。所以我们自然而然想到,把最近邻扩展为最近的N个临近点,然后统计一下这些点的类目分布,取最多的那个类目作为自己的类别。 恩,这就是KNN的思想。 KNN其实是一种特别常用的分类算法。但是有个问题,我们的K值应该取多少呢。换句话说,我们找多少邻居来投票,比较靠谱呢? #### 3.1 交叉验证与参数选择 在现在的场景下,假如我们确定使用KNN来完成图片类别识别问题。我们发现有一些参数是肯定会影响最后的识别结果的,比如: - 距离的选择(l1,l2,cos等等) - 近邻个数K的取值。 每组参数下其实都能产生一个新的model,所以这可以视为一个模型选择/model selection问题。而对于模型选择问题,最常用的办法就是在[交叉验证](https://en.wikipedia.org/wiki/Cross-validation_%28statistics%29)集上实验。 数据总量就那么多,如果我们在test data上做模型参数选择,又用它做效果评估,显然不是那么合理(因为我们的模型参数很有可能是在test data上过拟合的,不能很公正地评估结果)。所以我们通常会把训练数据分为两个部分,一大部分作为训练用,另外一部分就是所谓的cross validation数据集,用来进行模型参数选择的。比如说我们有50000训练图片,我们可以把它分为49000的训练集和1000的交叉验证集。 ~~~ # 假定已经有Xtr_rows, Ytr, Xte_rows, Yte了,其中Xtr_rows为50000*3072 矩阵 Xval_rows = Xtr_rows[:1000, :] # 构建1000的交叉验证集 Yval = Ytr[:1000] Xtr_rows = Xtr_rows[1000:, :] # 保留49000的训练集 Ytr = Ytr[1000:] # 设置一些k值,用于试验 validation_accuracies = [] for k in [1, 3, 5, 7, 10, 20, 50, 100]: # 初始化对象 nn = NearestNeighbor() nn.train(Xtr_rows, Ytr) # 修改一下predict函数,接受 k 作为参数 Yval_predict = nn.predict(Xval_rows, k = k) acc = np.mean(Yval_predict == Yval) print 'accuracy: %f' % (acc,) # 输出结果 validation_accuracies.append((k, acc)) ~~~ 这里提一个在很多地方会看到的概念,叫做k-fold cross-validation,意思其实就是把原始数据分成k份,轮流使用其中k-1份作为训练数据,而剩余的1份作为交叉验证数据(因此其实对于k-fold cross-validation我们会得到k个accuracy)。以下是5-fold cross-validation的一个示例: ![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-03-16_56e90ad007854.png) 以下是我们使用5-fold cross-validation,取不同的k值时,得到的accuracy曲线(补充一下,因为是5-fold cross-validation,所以在每个k值上有5个取值,我们取其均值作为此时的准确度) ![5-fold 交叉验证](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-03-16_56e90ad01d985.png "") 可以看出大概在k=7左右有最佳的准确度。 #### 3.2 最近邻方法的优缺点 K最近邻的优点大家都看出来了,思路非常简单清晰,而且完全不需要训练…不过也正因为如此,最后的predict过程非常耗时,因为要和全部训练集中的图片比对一遍。 实际应用中,我们其实更加关心实施predict所消耗的时间,如果有一个图像识别app返回结果要半小时一小时,你一定第一时间把它卸了。我们反倒不那么在乎训练时长,训练时间长一点没关系,只要最后应用的时候识别速度快效果好,就很赞。后面会提到的深度神经网络就是这样,深度神经网络解决图像问题时训练是一个很耗时间的过程,但是识别的过程非常快。 另外,不得不多说一句的是,优化计算K最近邻时间问题,实际上依旧到现在都是一个非常热门的问题。**Approximate Nearest Neighbor (ANN)**算法是牺牲掉一小部分的准确度,而提高很大程度的速度,能比较快地找到近似的K最近邻,现在已经有很多这样的库,比如说[FLANN](http://www.cs.ubc.ca/research/flann/). 最后,我们用一张图来说明一下,用图片像素级别的距离来实现图像类别识别,有其不足之处,我们用一个叫做[t-SNE](http://lvdmaaten.github.io/tsne/)的技术把CIFAR-10的所有图片按两个维度平铺出来,靠得越近的图片表示其像素级别的距离越接近。然而我们瞄一眼,发现,其实靠得最近的并不一定是同类别的。 ![像素级别图像距离排列](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-03-16_56e90ad02ee2b.jpg "") 其实观察一下,你就会发现,像素级别接近的图片,在整张图的颜色分布上,有很大的共性,然而在图像内容上,有时候也只能无奈地呵呵嗒,毕竟颜色分布相同的不同物体也是非常多的。
';