机器学习——深度学习(Deep Learning)
最后更新于:2022-04-01 14:29:50
Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得。
Key Words:有监督学习与无监督学习,分类、回归,密度估计、聚类,深度学习,Sparse DBN,
1. 有监督学习和无监督学习
给定一组数据(input,target)为Z=(X,Y)。
有监督学习:最常见的是regression & classification。
regression:Y是实数vector。回归问题,就是拟合(X,Y)的一条曲线,使得下式cost function L最小。
![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-04-07_57061793d8037.png)
classification:Y是一个finite number,可以看做类标号。分类问题需要首先给定有label的数据训练分类器,故属于有监督学习过程。分类问题中,cost function L(X,Y)是X属于类Y的概率的负对数。
![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-04-07_57061793e6a60.png)
,其中fi(X)=P(Y=i | X);
![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-04-07_5706179400bc8.png)
无监督学习:无监督学习的目的是学习一个function f,使它可以描述给定数据的位置分布P(Z)。 包括两种:density estimation & clustering.
density estimation就是密度估计,估计该数据在任意位置的分布密度
clustering就是聚类,将Z聚集几类(如K-Means),或者给出一个样本属于每一类的概率。由于不需要事先根据训练数据去train聚类器,故属于无监督学习。
PCA和很多deep learning算法都属于无监督学习。
2. [深度学习Deep Learning介绍](http://www.iro.umontreal.ca/~pift6266/H10/notes/deepintro.html)
Depth 概念:depth: the length of the longest path from an input to an output.
Deep Architecture 的三个特点:深度不足会出现问题;人脑具有一个深度结构(每深入一层进行一次abstraction,由lower-layer的features描述而成的feature构成,就是[上篇中提到的feature hierarchy问题](http://blog.csdn.net/abcjennifer/article/details/7804962),而且该hierarchy是一个[稀疏矩阵](http://blog.csdn.net/abcjennifer/article/details/7748833));认知过程逐层进行,逐步抽象
[ 3篇文章](http://www.iro.umontreal.ca/~pift6266/H10/notes/deepintro.html#breakthrough-in-learning-deep-architectures)介绍Deep Belief Networks,作为DBN的breakthrough
3.Deep Learning Algorithm 的核心思想:
把learning hierarchy 看做一个network,则
①无监督学习用于每一层网络的pre-train;
②每次用无监督学习只训练一层,将其训练结果作为其higher一层的输入;
③用监督学习去调整所有层
这里不负责任地理解下,举个例子在Autoencoder中,无监督学习学的是feature,有监督学习用在fine-tuning. 比如每一个neural network 学出的hidden layer就是feature,作为下一次神经网络无监督学习的input……这样一次次就学出了一个deep的网络,每一层都是上一次学习的hidden layer。再用softmax classifier去fine-tuning这个deep network的系数。
![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-04-07_5706179410c06.png)
这三个点是Deep Learning Algorithm的精髓,我在[上一篇](http://blog.csdn.net/abcjennifer/article/details/7804962)文章中也有讲到,其中第三部分:Learning Features Hierachy & Sparse DBN就讲了如何运用Sparse DBN进行feature学习。
4. Deep Learning 经典阅读材料:
> - The monograph or review paper [Learning Deep Architectures for AI](http://www.iro.umontreal.ca/~lisa/publications2/index.php/publications/show/239) (Foundations & Trends in Machine Learning, 2009).
> - The ICML 2009 Workshop on Learning Feature Hierarchies [webpage](http://www.cs.toronto.edu/~rsalakhu/deeplearning/index.html) has a [list of references](http://www.cs.toronto.edu/~rsalakhu/deeplearning/references.html).
> - The LISA [public wiki](http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/WebHome) has a [reading list](http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/ReadingOnDeepNetworks) and a [bibliography](http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DeepNetworksBibliography).
> - Geoff Hinton has [readings](http://www.cs.toronto.edu/~hinton/deeprefs.html) from last year’s [NIPS tutorial](http://videolectures.net/jul09_hinton_deeplearn/).
> 阐述Deep learning主要思想的三篇文章:
> - Hinton, G. E., Osindero, S. and Teh, Y., [A fast learning algorithm for deep belief nets](http://www.cs.toronto.edu/~hinton/absps/fastnc.pdf)Neural Computation 18:1527-1554, 2006
> - Yoshua Bengio, Pascal Lamblin, Dan Popovici and Hugo Larochelle, [Greedy Layer-Wise Training of Deep Networks](http://www.iro.umontreal.ca/~lisa/publications2/index.php/publications/show/190), in J. Platt et al. (Eds), Advances in Neural Information Processing Systems 19 (NIPS 2006), pp. 153-160, MIT Press, 2007**<比较了RBM和Auto-encoder>**
> - Marc’Aurelio Ranzato, Christopher Poultney, Sumit Chopra and Yann LeCun [Efficient Learning of Sparse Representations with an Energy-Based Model](http://yann.lecun.com/exdb/publis/pdf/ranzato-06.pdf), in J. Platt et al. (Eds), Advances in Neural Information Processing Systems (NIPS 2006), MIT Press, 2007**<将稀疏自编码用于回旋结构(convolutional architecture)>**
> 06年后,大批deep learning文章涌现,感兴趣的可以看下大牛Yoshua Bengio的综述[Learning deep architectures for {AI}](http://www.iro.umontreal.ca/~lisa/pointeurs/TR1312.pdf),不过本文很长,很长……
5. Deep Learning工具—— [Theano](http://deeplearning.net/software/theano)
[Theano](http://deeplearning.net/software/theano)是deep learning的Python库,要求首先熟悉Python语言和numpy,建议读者先看[Theano basic tutorial](http://deeplearning.net/software/theano/tutorial),然后按照*[Getting Started](http://deeplearning.net/tutorial/gettingstarted.html#gettingstarted) *下载相关数据并用gradient descent的方法进行学习。
学习了Theano的基本方法后,可以练习写以下几个算法:
有监督学习:
1. [*Logistic Regression*](http://deeplearning.net/tutorial/logreg.html#logreg) - using Theano for something simple
1. [*Multilayer perceptron*](http://deeplearning.net/tutorial/mlp.html#mlp) - introduction to layers
1. [*Deep Convolutional Network*](http://deeplearning.net/tutorial/lenet.html#lenet) - a simplified version of LeNet5
无监督学习:
- [*Auto Encoders, Denoising Autoencoders*](http://deeplearning.net/tutorial/dA.html#daa) - description of autoencoders
- [*Stacked Denoising Auto-Encoders*](http://deeplearning.net/tutorial/SdA.html#sda) - easy steps into unsupervised pre-training for deep nets
- [*Restricted Boltzmann Machines*](http://deeplearning.net/tutorial/rbm.html#rbm) - single layer generative RBM model
- [*Deep Belief Networks*](http://deeplearning.net/tutorial/DBN.html#dbn) - unsupervised generative pre-training of stacked RBMs followed by supervised fine-tuning
最后呢,推荐给大家基本ML的书籍:
- [Chris Bishop, “Pattern Recognition and Machine Learning”, 2007](http://research.microsoft.com/en-us/um/people/cmbishop/prml/)
- [Simon Haykin, “Neural Networks: a Comprehensive Foundation”, 2009 (3rd edition)](http://books.google.ca/books?id=K7P36lKzI_QC&dq=simon+haykin+neural+networks+book&source=gbs_navlinks_s)
- [Richard O. Duda, Peter E. Hart and David G. Stork, “Pattern Classification”, 2001 (2nd edition)](http://www.rii.ricoh.com/~stork/DHS.html)
关于Machine Learning更多的学习资料将继续更新,敬请关注本博客和新浪微博[Sophia_qing](http://weibo.com/u/2607574543)。
References:
1. [Brief Introduction to ML for AI](http://www.iro.umontreal.ca/~pift6266/H10/notes/mlintro.html)
2.[Deep Learning Tutorial](http://deeplearning.net/tutorial/)
3.[A tutorial on deep learning - Video](http://videolectures.net/jul09_hinton_deeplearn/)
注明:转自Rachel Zhang的专栏http://blog.csdn.net/abcjennifer/article/details/7826917