搜索

最后更新于:2022-04-01 21:46:30

## 搜索 本章详细研究这样一个搜索问题:在没有其他相关数据的情况下,如何存储一组整数? 为些介绍了5种数据结构:有序数组,有序链表,二叉搜索树,箱,位向量。 其中,二叉搜索树应该熟练掌握,以下是一种实现: ~~~ struct Node { int data; Node *lchild, *rchild, *parent; Node(): lchild(NULL), rchild(NULL), parent(NULL) { } }; class BST { private: static const int kMax = 1000; Node *root_, *parent_, nodes_[kMax]; int size_; private: Node* minimum(Node* node); Node* maximum(Node* node); Node* successor(Node* node); Node* predecessor(Node* node); void Insert(Node* &node, int x); void InorderTraver(Node* node); Node* Find(Node* node, int x); public: BST(): root_(NULL), parent_(NULL), size_(0) { memset(nodes_, '\0', sizeof(nodes_)); } void Insert(int x); void InorderTraver(); Node* Find(int x); void Remove(Node* z); }; Node* BST::minimum(Node* node) { if(node == NULL) return NULL; while(node->lchild) node = node->lchild; return node; } Node* BST::maximum(Node* node) { if(node == NULL) return NULL; while(node->rchild) node = node->rchild; return node; } Node* BST::successor(Node* node) { if(node->rchild) return minimum(node->rchild); Node *y = node->parent; while(y && node==y->rchild) { node = y; y = node->parent; } return y; } Node* BST::predecessor(Node* node) { if(node->lchild) return maximum(node->lchild); Node *y = node->parent; while(y && node==y->lchild) { node = y; y = node->parent; } return y; } void BST::Insert(Node* &node, int x) { if(node == NULL) { nodes_[size_].data = x; nodes_[size_].parent = parent_; node = &nodes_[size_]; ++size_; return; } parent_ = node; if(x < node->data) Insert(node->lchild, x); else Insert(node->rchild, x); } void BST::Insert(int x) { Insert(root_, x); } void BST::InorderTraver(Node* node) { if(node == NULL) return; InorderTraver(node->lchild); cout<data<<" "; InorderTraver(node->rchild); } void BST::InorderTraver() { InorderTraver(root_); } Node* BST::Find(Node* node, int x) { if(node == NULL) return NULL; if(x < node->data) return Find(node->lchild, x); else if(x > node->data) return Find(node->rchild, x); else return node; } Node* BST::Find(int x) { return Find(root_, x); } void BST::Remove(Node* z) { if(!z->lchild && !z->rchild) { if(z == root_) root_ = NULL; else if(z == z->parent->lchild) z->parent->lchild = NULL; else z->parent->rchild = NULL; } else if(z->lchild==NULL || z->rchild==NULL) { if(z == root_) { if(z->lchild) root_ = z->lchild; else root_ = z->rchild; root_->parent = NULL; } else { if(z==z->parent->lchild && z->lchild) { z->parent->lchild = z->lchild; z->lchild->parent = z->parent; } else if(z==z->parent->lchild && z->rchild) { z->parent->lchild = z->rchild; z->rchild->parent = z->parent; } else if(z==z->parent->rchild && z->lchild) { z->parent->rchild = z->lchild; z->lchild->parent = z->parent; } else { z->parent->rchild = z->rchild; z->rchild->parent = z->parent; } } } else { Node *s = predecessor(z); z->data = s->data; if(z == s->parent) s->parent->lchild = s->lchild; else s->parent->rchild = s->lchild; if(s->lchild) s->lchild->parent = s->parent; } } ~~~
';