一致性哈希 (Consistent Hash)
最后更新于:2022-04-01 10:13:48
Nginx版本:1.9.1
我的博客:[http://blog.csdn.net/zhangskd](http://blog.csdn.net/zhangskd)
**算法介绍**
当后端是缓存服务器时,经常使用一致性哈希算法来进行负载均衡。
使用一致性哈希的好处在于,增减集群的缓存服务器时,只有少量的缓存会失效,回源量较小。
在nginx+ats / haproxy+squid等CDN架构中,nginx/haproxy所使用的负载均衡算法便是一致性哈希。
我们举个例子来说明一致性哈希的好处。
假设后端集群包含三台缓存服务器,A、B、C。
请求r1、r2落在A上。
请求r3、r4落在B上。
请求r5、r6落在C上。
使用一致性哈希时,当缓存服务器B宕机时,r1/r2会仍然落在A上,r5/r6会仍然落在C上,
也就是说这两台服务器上的缓存都不会失效。r3/r4会被重新分配给A或者C,并产生回源。
使用其它算法,当缓存服务器B宕机时,r1/r2不再落在A上,r5/r6不再落在C上了。
也就是说A、B、C上的缓存都失效了,所有的请求都要回源。
这里不介绍一致性哈希算法的基本原理,如果不了解,先花个10分钟看下这篇文章:
[http://www.codeproject.com/Articles/56138/Consistent-hashing](http://www.codeproject.com/Articles/56138/Consistent-hashing)
在分析模块代码之前,先来看下nginx所实现的一致性哈希算法。
**1. 初始化upstream块**
主要工作是创建和初始化真实节点、创建和初始化虚拟节点。
其中真实节点是使用round robin的方法创建的。
Q:总共有多少个虚拟节点,一个真实节点对应多少个虚拟节点?
累加真实节点的权重,算出总的权重值total_weight,虚拟节点的个数一般为total_weight * 160。
一个权重为weight的真实节点,对应的虚拟节点数为weight * 160。
Q:对于每一个真实节点,是如何创建其对应的虚拟节点的?
1. 真实节点的server成员是其server指令的第一个参数,首先把它解析为HOST和PORT。
base_hash = crc32(HOST 0 PORT)
一个真实节点对应weight * 160个虚拟节点,对于每个虚拟节点来说,base_hash都是一样的。
2. 为了使每个虚拟节点的hash值都不同,又引入了PREV_HASH,它是上一个虚拟节点的hash值。
hash = crc32(base_hash PREV_HASH)
3. 虚拟节点的server成员,指向真实节点的server成员。如此一来,通过比较虚拟节点和真实节点的
server成员是否相同,可以判断它们是否是相对应的。
创建和初始化好虚拟节点数组后,对其中的虚拟节点按照hash值进行排序,对于hash值相同的虚拟节点,只保留第一个。
经过上述步骤,我们得到一个所有虚拟节点组成的数组,其元素的hash值有序而不重复。也就是说,ring建立起来了。
**2. 初始话请求的负载均衡数据**
根据hash指令第一个参数的实时值KEY,KEY一般是$host$uri之类的,计算出本次请求的哈希值。
hash = crc32(KEY)
根据请求的哈希值,在虚拟节点数组中,找到“顺时针方向”最近的一个虚拟节点,其索引为i。
什么叫顺时针方向最近?就是point[i - 1].hash < hash <= point[i].hash。
本次请求就落在该虚拟节点上了,之后交由其对应的真实节点来处理。
**3. 选取真实节点**
在peer.init中,已经知道请求落在哪个虚拟节点上了。
在peer.get中,需要查找虚拟节点对应的真实节点。
根据虚拟节点的server成员,在真实节点数组中查找server成员相同的、可用的真实节点。
如果找不到,那么沿着顺时针方向,继续查找下一个虚拟节点对应的真实节点。
如果找到了一个,那么就是它了。
如果找到了多个,使用轮询的方法从中选取一个。
**4. 缺陷和改进**
一个虚拟节点和一个真实节点,是依据它们的server成员来关联的。
这会出现一种情况,一个虚拟节点对应了多个真实节点,因为:
如果server指令的第一个参数为域名,可能解析为多个真实节点,那么这些真实节点的server成员都是一样的。
对于一个请求,计算其KEY的hash值,顺时针找到最近的虚拟节点后,发现该虚拟节点对应了多个真实节点。
使用哪个真实节点呢?本模块就使用轮询的方法,来从多个真实节点中选一个。
但我们知道使用一致性哈希的场景中,真实节点一般是缓存服务器。
一个虚拟节点对应多个真实节点,会导致一个文件被缓存在多个缓存服务器上。
这会增加磁盘的使用量,以及回源量,显然不是我们希望看到的。
解决这个问题的方法其实很简单,就是虚拟节点和真实节点通过name成员来建立关联。
因为就算对应同一条server配置,server的第一个参数为域名,各个真实节点的name成员也是唯一的。
这样一来,找到了一个虚拟节点,就能找到一个唯一的真实节点,不会有上述问题了。
**数据结构**
**1. 真实节点**
就是采用round robin算法所创建的后端服务器,类型为ngx_http_upstream_rr_peer_t。
需要注意的是,如果server指令的第一个参数是IP和端口,那么一条server指令只对应一个真实节点。
如果server指令的第一个参数是域名,一条server指令可能对应多个真实节点。
它们的server成员是相同的,可以通过name成员区分。
~~~
struct ngx_http_upstream_rr_peer_s {
struct sockaddr *sockaddr; /* 后端服务器的地址 */
socklen_t socklen; /* 地址的长度*/
ngx_str_t name; /* 后端服务器地址的字符串,server.addrs[i].name */
ngx_str_t server; /* server的名称,server.name */
ngx_int_t current_weight; /* 当前的权重,动态调整,初始值为0 */
ngx_int_t effective_weight; /* 有效的权重,会因为失败而降低 */
ngx_int_t weight; /* 配置项指定的权重,固定值 */
ngx_uint_t conns; /* 当前连接数 */
ngx_uint_t fails; /* "一段时间内",已经失败的次数 */
time_t accessed; /* 最近一次失败的时间点 */
time_t checked; /* 用于检查是否超过了"一段时间" */
ngx_uint_t max_fails; /* "一段时间内",最大的失败次数,固定值 */
time_t fail_timeout; /* "一段时间"的值,固定值 */
ngx_uint_t down; /* 服务器永久不可用的标志 */
...
ngx_http_upstream_rr_peer_t *next; /* 指向下一个后端,用于构成链表 */
...
} ngx_http_upstream_rr_peer_t;
~~~
ngx_http_upstream_rr_peers_t表示一组后端服务器,比如一个后端集群。
~~~
struct ngx_http_upstream_rr_peers_s {
ngx_uint_t number; /* 后端服务器的数量 */
...
ngx_uint_t total_weight; /* 所有后端服务器权重的累加值 */
unsigned single:1; /* 是否只有一台后端服务器 */
unsigned weighted:1; /* 是否使用权重 */
ngx_str_t *name; /* upstream配置块的名称 */
ngx_http_upstream_rr_peers_t *next; /* backup服务器集群 */
ngx_http_upstream_rr_peer_t *peer; /* 后端服务器组成的链表 */
};
~~~
**2. 虚拟节点**
一个真实节点,一般会对应weight * 160个虚拟节点。
虚拟节点的server成员,指向它所归属的真实节点的server成员,如此一来找到了一个虚拟节点后,
就能找到其归属的真实节点。
但这里有一个问题,通过一个虚拟节点的server成员,可能会找到多个真实节点,而不是一个。
因为如果server指令的第一个参数为域名,那么多个真实节点的server成员都是一样的。
~~~
typedef struct {
uint32_t hash; /* 虚拟节点的哈希值 */
ngx_str_t *server; /* 虚拟节点归属的真实节点,对应真实节点的server成员 */
} ngx_http_upstream_chash_point_t;
typedef struct {
ngx_uint_t number; /* 虚拟节点的个数 */
ngx_http_upstream_chash_point_t point[1]; /* 虚拟节点的数组 */
} ngx_http_upstream_chash_points_t;
typedef struct {
ngx_http_complex_value_t key; /* 关联hash指令的第一个参数,用于计算请求的hash值 */
ngx_http_upstream_chash_points_t *points; /* 虚拟节点的数组 */
} ngx_http_upstream_chash_points_t;
~~~
**3. 请求的一致性哈希数据**
~~~
typedef struct {
/* the round robin data must be first */
ngx_http_upstream_rr_peer_data_t rrp; /* round robin的per request负载均衡数据 */
ngx_http_upstream_hash_srv_conf_t *conf; /* server配置块 */
ngx_str_t key; /* 对于本次请求,hash指令的第一个参数的具体值,用于计算本次请求的哈希值 */
ngx_uint_t tries; /* 已经尝试的虚拟节点数 */
ngx_uint_t rehash; /* 本算法不使用此成员 */
uint32_t hash; /* 根据请求的哈希值,找到顺时方向最近的一个虚拟节点,hash为该虚拟节点在数组中的索引 */
ngx_event_get_peer_pt get_rr_peer; /* round robin算法的peer.get函数 */
} ngx_http_upstream_hash_peer_data_t;
~~~
round robin的per request负载均衡数据。
~~~
typedef struct {
ngx_http_upstream_rr_peers_t *peers; /* 后端集群 */
ngx_http_upstream_rr_peer_t *current; /* 当前使用的后端服务器 */
uintptr_t *tried; /* 指向后端服务器的位图 */
uintptr_t data; /* 当后端服务器的数量较少时,用于存放其位图 */
} ngx_http_upstream_rr_peer_data_t;
~~~
**指令的解析函数**
在一个upstream配置块中,如果有hash指令,且它只带一个参数,则使用的负载均衡算法为哈希算法,比如:
hash $host$uri;
在一个upstream配置块中,如果有hash指令,且它带了两个参数,且第二个参数为consistent,则使用的
负载均衡算法为一致性哈希算法,比如:
hash $host$uri consistent;
这说明hash指令所属的模块ngx_http_upstream_hash_module同时实现了两种负载均衡算法,而实际上
哈希算法、一致性哈希算法完全可以用两个独立的模块来实现,它们本身并没有多少关联。
哈希算法的实现比较简单,类似之前分析过的ip_hash,接下来分析的是一致性哈希算法。
hash指令的解析函数主要做了:
把hash指令的第一个参数,关联到一个ngx_http_complex_value_t变量,之后可以通过该变量获取参数的实时值。
指定此upstream块中server指令支持的属性。
根据hash指令携带的参数来判断是使用哈希算法,还是一致性哈希算法。如果hash指令的第二个参数为"consistent",
则表示使用一致性哈希算法,指定upstream块的初始化函数uscf->peer.init_upstream。
~~~
static char *ngx_http_upstream_hash(ngx_conf_t *cf, ngx_command_t *cmd, void *conf)
{
ngx_http_upstream_hash_srv_conf_t *hcf = conf;
ngx_str_t *value;
ngx_http_upstream_srv_conf_t *uscf;
ngx_http_compile_complex_value_t ccv;
value = cf->args->elts;
ngx_memzero(&ccv, sizeof(ngx_http_compile_complex_value_t));
/* 把hash指令的第一个参数,关联到一个ngx_http_complex_value_t变量,
* 之后可以通过该变量获取参数的实时值。
*/
ccv.cf = conf;
ccv.value = &value[1];
ccv.complex_value = &hcf->key;
if (ngx_http_compile_complex_value(&ccv) != NGX_OK)
return NGX_CONF_ERROR;
/* 获取所在的upstream{}块 */
uscf = ngx_http_conf_get_module_srv_conf(cf, ngx_http_upstream_module);
if (uscf->peer.init_upstream)
ngx_conf_log_error(NGX_LOG_WARN, cf, 0, "load balancing method redefined");
/* 指定此upstream块中server指令支持的属性 */
uscf->flags = NGX_HTTP_UPSTREAM_CREATE
| NGX_HTTP_UPSTREAM_WEIGHT
| NGX_HTTP_UPSTREAM_MAX_FAILS
| NGX_HTTP_UPSTREAM_FAIL_TIMEOUT
| NGX_HTTP_UPSTREAM_DOWN;
/* 根据hash指令携带的参数来判断是使用哈希算法,还是一致性哈希算法。
* 每种算法都有自己的upstream块初始化函数。
*/
if (cf->args->nelts == 2)
uscf->peer.init_upstream = ngx_http_upstream_init_hash;
else if (ngx_strcmp(value[2].data, "consistent") == 0)
uscf->peer.init_upstream = ngx_http_upstream_init_chash;
else
ngx_conf_log_error(NGX_LOG_EMERG, cf, 0, "invalid parameter \"%V\"", &value[2]);
return NGX_CONF_OK;
}
~~~
**初始化upstream块**
执行完指令的解析函数后,紧接着会调用所有HTTP模块的init main conf函数。
在执行ngx_http_upstream_module的init main conf函数时,会调用所有upstream块的初始化函数。
对于使用一致性哈希的upstream块,其初始化函数(peer.init_upstream)就是上一步中指定
ngx_http_upstream_init_chash,它主要做了:
调用round robin的upstream块初始化函数来创建和初始化真实节点
指定per request的负载均衡初始化函数peer.init
创建和初始化虚拟节点数组,使该数组中的虚拟节点有序而不重复
~~~
static ngx_int_t ngx_http_upstream_init_chash(ngx_conf_t *cf, ngx_http_upstream_srv_conf_t *us)
{
u_char *host, *port, c;
size_t host_len, port_len, size;
uint32_t hash, base_hash;
ngx_str_t *server;
ngx_uint_t npoints, i, j;
ngx_http_upstream_rr_peer_t *peer;
ngx_http_upstream_rr_peers_t *peers;
ngx_http_upstream_chash_points_t *points;
ngx_http_upstream_hash_srv_conf_t *hcf;
union {
uint32_t value;
u_char byte[4];
} prev_hash;
/* 使用round robin的upstream块初始化函数,创建和初始化真实节点 */
if (ngx_http_upstream_init_round_robin(cf, us) != NGX_OK)
return NGX_ERROR:
/* 重新设置per request的负载均衡初始化函数 */
us->peer.init = ngx_http_upstream_init_chash_peer;
peers = us->peer.data; /* 真实节点的集群 */
npoints = peers->total_weight * 160;
/* 一共创建npoints个虚拟节点 */
size = sizeof(ngx_http_upstream_chash_points_t) +
sizeof(ngx_http_upstream_chash_point_t) * (npoints - 1);
points = ngx_palloc(cf->pool, size);
if (points == NULL)
return NGX_ERROR;
points->number = 0;
/* 初始化所有的虚拟节点 */
for (peer = peers->peer; peer; peer = peer->next) {
server = &peer->server; /* server指令的第一个参数, server.name */
/* Hash expression is compatible with Cache::Memcached::Fast:
* crc32(HOST 0 PORT PREV_HASH).
*/
if (server->len >= 5 && ngx_strncasecmp(server->data, (u_char *) "unix:", 5) == 0)
{
host = server->data + 5;
host_len = server->len - 5;
port = NULL;
port_len = 0;
goto done;
}
/* 把每个peer的server成员,解析为HOST和PORT */
for (j = 0; j < server->len; j++) {
c = server->data[server->len - j - 1];
if (c == ":") {
host = server->data;
host_len = server->len - j - 1;
port = server->data + server->len - j;
port_len = j;
goto done;
}
if (c < '0' || c > '9') /* 表示没有指定端口 */
break;
}
host = server->data;
host_len = server->len;
port = NULL;
port_len = 0;
done:
/* 根据解析peer的server成员所得的HOST和PORT,计算虚拟节点的base_hash值 */
ngx_crc32_init(base_hash);
ngx_crc32_update(&base_hash, host, host_len);
ngx_crc32_update(&base_hash, (u_char *) "", 1); /* 空字符串包含字符\0 */
ngx_crc32_update(&base_hash, port, port_len);
/* 对于归属同一个真实节点的虚拟节点,它们的base_hash值相同,而prev_hash不同 */
prev_hash.value = 0;
npoints = peer->weight * 160;
for (j = 0; j < npoints; j++) {
hash = base_hash;
ngx_crc32_update(&hash, prev_hash.byte, 4);
ngx_crc32_final(hash);
points->point[points->number].hash = hash; /* 虚拟节点的哈希值 */
points->point[points->number].server = server; /* 虚拟节点所归属的真实节点,对应真实节点的server成员 */
points->number++;
#if (NGX_HAVE_LITTLE_ENDIAN)
prev_hash.value = hash;
#else
prev_hash.byte[0] = (u_char) (hash & 0xff);
prev_hash.byte[1] = (u_char) ((hash >> 8) & 0xff);
prev_hash.byte[2] = (u_char) ((hash >> 16) & 0xff);
prev_hash.byte[3] = (u_char) ((hash >> 24) & 0xff);
#endif
}
}
/* 使用快速排序,使虚拟节点数组的元素,按照其hash值从小到大有序 */
ngx_qsort(points->point, points->number, sizeof(ngx_http_upstream_chash_point_t),
ngx_http_upstream_chash_cmp_points);
/* 如果虚拟节点数组中,有多个元素的hash值相同,只保留第一个 */
for (i = 0, j = 1; j < points->number; j++)
if (points->point[i].hash != points->point[j].hash)
points->point[++i] = points->point[j];
/* 经过上述步骤后,虚拟节点数组中的元素,有序而不重复 */
points->number = i + 1;
hcf = ngx_http_conf_upstream_srv_conf(us, ngx_http_upstream_hash_module);
hcf->points = points; /* 保存虚拟节点数组 */
return NGX_OK;
}
~~~
~~~
static int ngx_libc_cdel ngx_http_upstream_chash_cmp_points(const void *one, const void *two)
{
ngx_http_upstream_chash_point_t *first = (ngx_http_upstream_chash_point_t *) one;
ngx_http_upstream_chash_point_t *second = (ngx_http_upstream_chash_point_t *) two;
if (first->hash < second->hash)
return -1;
else if (first->hash > second->hash)
return 1;
else
return 0;
}
~~~
**初始化请求的负载均衡数据**
收到一个请求后,一般使用的反向代理模块(upstream模块)为ngx_http_proxy_module,
其NGX_HTTP_CONTENT_PHASE阶段的处理函数为ngx_http_proxy_handler,在初始化upstream机制的
ngx_http_upstream_init_request函数中,调用在第二步中指定的peer.init,主要用于初始化请求的负载均衡数据。
对于一致性哈希,peer.init实例为ngx_http_upstream_init_chash_peer,主要做了:
首先调用hash算法的per request负载均衡初始化函数,创建和初始化请求的负载均衡数据。
重新指定peer.get,用于选取一个真实节点来处理本次请求。
获取的本请求对应的hash指令的第一个参数值,计算请求的hash值。
寻找第一个hash值大于等于请求的哈希值的虚拟节点,即寻找“顺时针方向最近”的一个虚拟节点。
~~~
static ngx_int_t ngx_http_upstream_init_chash_peer(ngx_http_request_t *r, ngx_http_upstream_srv_conf_t *us)
{
uint32_t hash;
ngx_http_upstream_hash_srv_conf_t *hcf;
ngx_http_upstream_hash_peer_data_t *hp;
/* 调用hash算法的per request负载均衡初始化函数,创建和初始化请求的负载均衡数据 */
if (ngx_http_upstream_init_hash_peer(r, us) != NGX_OK)
return NGX_ERROR;
/* 重新指定peer.get,用于选取一个真实节点 */
r->upstream->peer.get = ngx_http_upstream_get_chash_peer;
hp = r->upstream->peer.data;
hcf = ngx_http_conf_upstream_srv_conf(us, ngx_http_upstream_hash_module);
/* 根据获取的本请求对应的hash指令的第一个参数值,计算请求的hash值 */
hash = ngx_crc32_long(hp->key.data, hp->key.len);
/* 根据请求的hash值,找到顺时针方向最近的一个虚拟节点,hp->hash记录此虚拟节点
* 在数组中的索引。
*/
hp->hash = ngx_http_upstream_find_chash_point(hcf->points, hash);
return NGX_OK:
}
~~~
hash算法的per request负载均衡初始化函数。
~~~
static ngx_int_t ngx_http_upstream_init_hash_peer(ngx_http_request_t *r, ngx_http_upstream_srv_conf_t *us)
{
ngx_http_upstream_hash_srv_conf_t *hcf;
ngx_http_upstream_hash_peer_data_t *hp;
hp = ngx_palloc(r->pool, sizeof(ngx_http_upstream_hash_peer_data_t));
if (hp == NULL)
return NGX_ERROR:
/* 调用round robin的per request负载均衡初始化函数 */
r->upstream->peer.data = &hp->rrp;
if (ngx_http_upstream_init_round_robin_peer(r, us) != NGX_OK)
return NGX_ERROR;
r->upstream->peer.get = ngx_http_upstream_get_hash_peer;
hcf = ngx_http_conf_upstream_srv_conf(us, ngx_http_upstream_hash_module);
/* 获取本请求对应的hash指令的第一个参数值,用于计算请求的hash值 */
if (ngx_http_complex_value(r, &hcf->key, &hp->key) != NGX_OK)
return NGX_ERROR;
...
hp->conf = hcf;
hp->tries = 0;
hp->rehash = 0;
hp->hash = 0;
hp->get_rr_peer = ngx_http_upstream_get_round_robin_peer; /* round robin的peer.get函数 */
return NGX_OK;
}
~~~
我们知道虚拟节点数组是有序的,事先已按照虚拟节点的hash值从小到大排序好了。
现在使用二分查找,寻找第一个hash值大于等于请求的哈希值的虚拟节点,即“顺时针方向最近”的一个虚拟节点。
~~~
static ngx_uint_t ngx_http_upstream_find_chash_point(ngx_http_upstream_chash_points_t *points, uint32_t hash)
{
ngx_uint_t i, j, k;
ngx_http_upstream_chash_point_t *point;
/* find first point >= hash */
point = &points->point[0];
i = 0;
j = points->number;'
while(i < j) {
k = (i + j) / 2;
if (hash > point[k].hash)
i = k + 1;
else if (hash < point[k].hash)
j = k;
else
return k;
}
return i;
}
~~~
**选取一个真实节点**
一般upstream块中会有多个真实节点,那么对于本次请求,要选定哪一个真实节点呢?
对于一致性哈希算法,选取真实节点的peer.get函数为ngx_http_upstream_get_chash_peer。
其实在peer.init中,已经找到了该请求对应的虚拟节点了:
根据请求对应的hash指令的第一个参数值,计算请求的hash值。
寻找第一个哈希值大于等于请求的hash值的虚拟节点,即“顺时针方向最近”的一个虚拟节点。
在peer.get中,需查找此虚拟节点对应的真实节点。
根据虚拟节点的server成员,在真实节点数组中查找server成员一样的且可用的真实节点。
如果找不到,那么沿着顺时针方向,继续查找下一个虚拟节点对应的真实节点。
如果找到一个真实节点,那么就是它了。
如果找到多个真实节点,使用轮询的方法从中选取一个。
~~~
static ngx_http_upstream_get_chash_peer(ngx_peer_connection_t *pc, void *data)
{
ngx_http_upstream_hash_peer_data_t *hp = data; /* 请求的负载均衡数据 */
time_t now;
intptr_t m;
ngx_str_t *server;
ngx_int_t total;
ngx_uint_t i, n, best_i;
ngx_http_upstream_rr_peer_t *peer, *best;
ngx_http_upstream_chash_point_t *point;
ngx_http_upstream_chash_points_t *points;
ngx_http_upstream_hash_srv_conf_t *hcf;
...
pc->cached = 0;
pc->connection = NULL:
now = ngx_time();
hcf = hp->conf;
points = hcf->points; /* 虚拟节点数组 */
point = &points->point[0]; /* 指向第一个虚拟节点 */
for ( ; ; ) {
/* 在peer.init中,已根据请求的哈希值,找到顺时针方向最近的一个虚拟节点,
* hash为该虚拟节点在数组中的索引。
* 一开始hash值肯定小于number,之后每尝试一个虚拟节点后,hash++。取模是为了防止越界访问。
*/
server = point[hp->hash % points->number].server;
best = NULL;
best_i = 0;
total = 0;
/* 遍历真实节点数组,寻找可用的、该虚拟节点归属的真实节点(server成员相同),
* 如果有多个真实节点同时符合条件,那么使用轮询来从中选取一个真实节点。
*/
for (peer = hp->rrp.peers->peer, i = 0; peer; peer = peer->next, i++) {
/* 检查此真实节点在状态位图中对应的位,为1时表示不可用 */
n = i / (8 * sizeof(uintptr_t));
m = (uintptr_t) 1 << i % (8 * sizeof(uintptr_t));
if (hp->rrp.tried[n] & m)
continue;
/* server指令中携带了down属性,表示后端永久不可用 */
if (peer->down)
continue;
/* 如果真实节点的server成员和虚拟节点的不同,表示虚拟节点不属于此真实节点 */
if (peer->server.len != server->len ||
ngx_strncmp(peer->server.data, server->data, server->len) != 0)
continue;
/* 在一段时间内,如果此真实节点的失败次数,超过了允许的最大值,那么不允许使用了 */
if (peer->max_fails
&& peer->fails >= peer->max_fails
&& now - peer->checked <= peer->fail_timeout)
continue;
peer->current_weight += peer->effective_weight; /* 对每个真实节点,增加其当前权重 */
total += peer->effective_weight; /* 累加所有真实节点的有效权重 */
/* 如果之前此真实节点发生了失败,会减小其effective_weight来降低它的权重。
* 此后又通过增加其effective_weight来恢复它的权重。
*/
if (peer->effective_weight < peer->weight)
peer->effective_weight++;
/* 选取当前权重最大者,作为本次选定的真实节点 */
if (best == NULL || peer->current_weight > best->current_weight) {
best = peer;
best_i = i;
}
}
/* 如果选定了一个真实节点 */
if (best) {
best->current_weight -= total; /* 如果使用了轮询,需要降低选定节点的当前权重 */
goto found;
}
hp->hash++; /* 增加虚拟节点的索引,即“沿着顺时针方向” */
hp->tries++; /* 已经尝试的虚拟节点数 */
/* 如果把所有的虚拟节点都尝试了一遍,还找不到可用的真实节点 */
if (hp->tries >= points->number)
return NGX_BUSY;
}
found: /* 找到了和虚拟节点相对应的、可用的真实节点了 */
hp->rrp.current = best; /* 选定的真实节点 */
/* 保存选定的后端服务器的地址,之后会向这个地址发起连接 */
pc->sockaddr = peer->sockaddr;
pc->socklen = peer->socklen;
pc->name = &peer->name;
best->conns++;
/* 更新checked时间 */
if (now - best->checked > best->fail_timeout)
best->checked = now;
n = best_i / (8 * sizeof(uintptr_t));
m = (uintptr_t) 1 << best_i % (8 * sizeof(uintptr_t));
/* 对于本次请求,如果之后需要再次选取真实节点,不能再选取同一个了 */
hp->rrp->tried[n] |= m;
return NGX_OK;
}
~~~