一个快速的例子

最后更新于:2022-04-01 22:18:45

# 一个快速的例子 在我们进入如何编写Spark Streaming程序的细节之前,让我们快速地浏览一个简单的例子。在这个例子中,程序从监听TCP套接字的数据服务器获取文本数据,然后计算文本中包含的单词数。做法如下: 首先,我们导入Spark Streaming的相关类以及一些从StreamingContext获得的隐式转换到我们的环境中,为我们所需的其他类(如DStream)提供有用的方法。[StreamingContext](https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.streaming.StreamingContext)是Spark所有流操作的主要入口。然后,我们创建了一个具有两个执行线程以及1秒批间隔时间(即以秒为单位分割数据流)的本地StreamingContext。 ~~~ import org.apache.spark._ import org.apache.spark.streaming._ import org.apache.spark.streaming.StreamingContext._ // Create a local StreamingContext with two working thread and batch interval of 1 second val conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount") val ssc = new StreamingContext(conf, Seconds(1)) ~~~ 利用这个上下文,我们能够创建一个DStream,它表示从TCP源(主机位localhost,端口为9999)获取的流式数据。 ~~~ // Create a DStream that will connect to hostname:port, like localhost:9999 val lines = ssc.socketTextStream("localhost", 9999) ~~~ 这个`lines`变量是一个DStream,表示即将从数据服务器获得的流数据。这个DStream的每条记录都代表一行文本。下一步,我们需要将DStream中的每行文本都切分为单词。 ~~~ // Split each line into words val words = lines.flatMap(_.split(" ")) ~~~ `flatMap`是一个一对多的DStream操作,它通过把源DStream的每条记录都生成多条新记录来创建一个新的DStream。在这个例子中,每行文本都被切分成了多个单词,我们把切分的单词流用`words`这个DStream表示。下一步,我们需要计算单词的个数。 ~~~ import org.apache.spark.streaming.StreamingContext._ // Count each word in each batch val pairs = words.map(word => (word, 1)) val wordCounts = pairs.reduceByKey(_ + _) // Print the first ten elements of each RDD generated in this DStream to the console wordCounts.print() ~~~ `words`这个DStream被mapper(一对一转换操作)成了一个新的DStream,它由(word,1)对组成。然后,我们就可以用这个新的DStream计算每批数据的词频。最后,我们用`wordCounts.print()`打印每秒计算的词频。 需要注意的是,当以上这些代码被执行时,Spark Streaming仅仅准备好了它要执行的计算,实际上并没有真正开始执行。在这些转换操作准备好之后,要真正执行计算,需要调用如下的方法 ~~~ ssc.start() // Start the computation ssc.awaitTermination() // Wait for the computation to terminate ~~~ 完整的例子可以在[NetworkWordCount](https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/streaming/NetworkWordCount.scala)中找到。 如果你已经下载和构建了Spark环境,你就能够用如下的方法运行这个例子。首先,你需要运行Netcat作为数据服务器 ~~~ $ nc -lk 9999 ~~~ 然后,在不同的终端,你能够用如下方式运行例子 ~~~ $ ./bin/run-example streaming.NetworkWordCount localhost 9999 ~~~
';