关联容器之map
最后更新于:2022-04-01 15:50:57
### 前言
在SGI STL中的容器map,底层实现机制是RB-Tree,是因为map的操作RB-Tree都能实现,有关RB-Tree的剖析请看《[STL源码剖析——RB-Tree](http://blog.csdn.net/chenhanzhun/article/details/39523519)[(红黑树)](http://blog.csdn.net/chenhanzhun/article/details/39523519)》。在map容器键值key和实值value是不相同的,键值key和实值value的比较函数也是不同的。在容器里面的元素是根据元素的键值自动排序的,不能修改map容器的键值,但是可以修改容器的实值。map的所有节点元素都是pair,pair有两个成员变量first,second;第一个first是键值key,第二个second是实值value;有关pair的介绍见前文《[stl_pair.h学习](http://blog.csdn.net/chenhanzhun/article/details/39526719)》剖析。本文的源码出自SGI STL中的<stl_map.h>文件。
### map容器源码剖析
在源码剖析的时候,会针对一些函数给出例子,例子包含在剖析文件里面。
~~~
#ifndef __SGI_STL_INTERNAL_MAP_H
#define __SGI_STL_INTERNAL_MAP_H
#include <concept_checks.h>
__STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#pragma set woff 1375
#endif
/*
map的所有节点元素都是pair,pair有两个成员变量first,second
第一个first是键值key,第二个second是实值value
有关pair的定义见前文<stl_pair.h>剖析
*/
//map内部元素根据键值key默认使用递增排序less
//用户可自行制定比较类型
//内部维护的数据结构是红黑树, 具有非常优秀的最坏情况的时间复杂度
//注意:map键值和实值是分开的,map的键值key是唯一的,实值value可以重复
//不能通过迭代器修改map的键值key,其迭代器类型是定义为RB-Tree的const_iterator
//但是可以通过迭代器修改map的实值value
// Forward declarations of operators == and <, needed for friend declarations.
template <class _Key, class _Tp,
class _Compare __STL_DEPENDENT_DEFAULT_TMPL(less<_Key>),
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) >
class map;
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator==(const map<_Key,_Tp,_Compare,_Alloc>& __x,
const map<_Key,_Tp,_Compare,_Alloc>& __y);
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator<(const map<_Key,_Tp,_Compare,_Alloc>& __x,
const map<_Key,_Tp,_Compare,_Alloc>& __y);
//map定义
template <class _Key, class _Tp, class _Compare, class _Alloc>
class map {
public:
// requirements:
__STL_CLASS_REQUIRES(_Tp, _Assignable);
__STL_CLASS_BINARY_FUNCTION_CHECK(_Compare, bool, _Key, _Key);
// typedefs:
typedef _Key key_type;//键值key类型
typedef _Tp data_type;//数据(实值)value类型
typedef _Tp mapped_type;
typedef pair<const _Key, _Tp> value_type;//元素型别,包含(键值/实值),const保证键值key不被修改
typedef _Compare key_compare;//键值key比较函数
//嵌套类,提供键值key比较函数接口
//继承自<stl_function.h>中的binary_function
/*
template <class _Arg1, class _Arg2, class _Result>
struct binary_function {
typedef _Arg1 first_argument_type;
typedef _Arg2 second_argument_type;
typedef _Result result_type;
};
*/
class value_compare
: public binary_function<value_type, value_type, bool> {
friend class map<_Key,_Tp,_Compare,_Alloc>;
protected :
_Compare comp;
value_compare(_Compare __c) : comp(__c) {}
public:
bool operator()(const value_type& __x, const value_type& __y) const {
return comp(__x.first, __y.first);//以键值调用比较函数
}
};
private:
//底层机制是RB-Tree
//以map类型(一个pair)的第一个类型作为TB-tree的键值类型.
//所以在RB-tree中,键值key不能修改
typedef _Rb_tree<key_type, value_type,
_Select1st<value_type>, key_compare, _Alloc> _Rep_type;
_Rep_type _M_t; // red-black tree representing map
public:
typedef typename _Rep_type::pointer pointer;
typedef typename _Rep_type::const_pointer const_pointer;
typedef typename _Rep_type::reference reference;
typedef typename _Rep_type::const_reference const_reference;
//map的迭代器不直接定义为const_iterator,而是分别定义iterator,const_iterator
//是因为map的键值key不能被修改,所以必须定义为const_iterator
//而map的实值value可以被修改,则定义为iterator
typedef typename _Rep_type::iterator iterator;
typedef typename _Rep_type::const_iterator const_iterator;
typedef typename _Rep_type::reverse_iterator reverse_iterator;
typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
typedef typename _Rep_type::size_type size_type;
typedef typename _Rep_type::difference_type difference_type;
typedef typename _Rep_type::allocator_type allocator_type;
// allocation/deallocation
// map只能使用RB-tree的insert-unique(),不能使用insert-equal()
//因为必须保证键值唯一
/*
构造函数
map();
explicit map (const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());
template <class InputIterator>
map (InputIterator first, InputIterator last,
const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());
map (const map& x);
*/
/*
example:
#include <iostream>
#include <map>
bool fncomp (char lhs, char rhs) {return lhs<rhs;}
struct classcomp {
bool operator() (const char& lhs, const char& rhs) const
{return lhs<rhs;}
};
int main ()
{
std::map<char,int> first;
first['a']=10;
first['b']=30;
first['c']=50;
first['d']=70;
std::map<char,int> second (first.begin(),first.end());
std::map<char,int> third (second);
std::map<char,int,classcomp> fourth; // class as Compare
bool(*fn_pt)(char,char) = fncomp;
std::map<char,int,bool(*)(char,char)> fifth (fn_pt); // function pointer as Compare
return 0;
}
*/
map() : _M_t(_Compare(), allocator_type()) {}
explicit map(const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) {}
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIterator>
map(_InputIterator __first, _InputIterator __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_unique(__first, __last); }
template <class _InputIterator>
map(_InputIterator __first, _InputIterator __last, const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { _M_t.insert_unique(__first, __last); }
#else
map(const value_type* __first, const value_type* __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_unique(__first, __last); }
map(const value_type* __first,
const value_type* __last, const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { _M_t.insert_unique(__first, __last); }
map(const_iterator __first, const_iterator __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_unique(__first, __last); }
map(const_iterator __first, const_iterator __last, const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { _M_t.insert_unique(__first, __last); }
#endif /* __STL_MEMBER_TEMPLATES */
//拷贝构造函数
map(const map<_Key,_Tp,_Compare,_Alloc>& __x) : _M_t(__x._M_t) {}
//这里提供了operator=,即可以通过=初始化对象
map<_Key,_Tp,_Compare,_Alloc>&
operator=(const map<_Key, _Tp, _Compare, _Alloc>& __x)
{
_M_t = __x._M_t;
return *this;
}
// accessors:
//以下调用RB-Tree的操作
//返回键值的比较函数,这里是调用RB-Tree的key_comp()
key_compare key_comp() const { return _M_t.key_comp(); }
//返回实值的比较函数
//这里调用的是map嵌套类中定义的比较函数
/*
class value_compare
: public binary_function<value_type, value_type, bool> {
friend class map<_Key,_Tp,_Compare,_Alloc>;
protected :
_Compare comp;
value_compare(_Compare __c) : comp(__c) {}
public:
bool operator()(const value_type& __x, const value_type& __y) const {
return comp(__x.first, __y.first);//以键值调用比较函数
}
*/
//实际上最终还是调用键值key的比较函数,即他们是调用同一个比较函数
value_compare value_comp() const { return value_compare(_M_t.key_comp()); }
//获得分配器的类型
allocator_type get_allocator() const { return _M_t.get_allocator(); }
iterator begin() { return _M_t.begin(); }
const_iterator begin() const { return _M_t.begin(); }
iterator end() { return _M_t.end(); }
const_iterator end() const { return _M_t.end(); }
reverse_iterator rbegin() { return _M_t.rbegin(); }
const_reverse_iterator rbegin() const { return _M_t.rbegin(); }
reverse_iterator rend() { return _M_t.rend(); }
const_reverse_iterator rend() const { return _M_t.rend(); }
bool empty() const { return _M_t.empty(); }
size_type size() const { return _M_t.size(); }
size_type max_size() const { return _M_t.max_size(); }
//重载operator[],返回是实值value(即pair.second)的引用
//注意:若你原先没有定义map对象,即你访问的键值key不存在,则会自动新建一个map对象
//键值key为你访问的键值key,实值value为空,看下面的例子就明白了
_Tp& operator[](const key_type& __k) {
iterator __i = lower_bound(__k);
// __i->first is greater than or equivalent to __k.
if (__i == end() || key_comp()(__k, (*__i).first))
__i = insert(__i, value_type(__k, _Tp()));
return (*__i).second;
//其实简单的方式是直接返回
//return (*((insert(value_type(k, T()))).first)).second;
}
/*
example:
#include <iostream>
#include <map>
#include <string>
int main ()
{
std::map<char,std::string> mymap;
mymap['a']="an element";
mymap['b']="another element";
mymap['c']=mymap['b'];
std::cout << "mymap['a'] is " << mymap['a'] << '\n';
std::cout << "mymap['b'] is " << mymap['b'] << '\n';
std::cout << "mymap['c'] is " << mymap['c'] << '\n';
std::cout << "mymap['d'] is " << mymap['d'] << '\n';
std::cout << "mymap now contains " << mymap.size() << " elements.\n";
return 0;
}
Ouput:
mymap['a'] is an element
mymap['b'] is another element
mymap['c'] is another element
mymap['d'] is
mymap now contains 4 elements.
*/
//交换map对象的内容
void swap(map<_Key,_Tp,_Compare,_Alloc>& __x) { _M_t.swap(__x._M_t); }
// insert/erase
/*
插入元素
single element (1):
pair<iterator,bool> insert (const value_type& val);
with hint (2):
iterator insert (iterator position, const value_type& val);
range (3):
template <class InputIterator>
void insert (InputIterator first, InputIterator last);
*/
//插入元素节点,调用RB-Tree的insert_unique(__x);
//不能插入相同键值的元素
pair<iterator,bool> insert(const value_type& __x)
{ return _M_t.insert_unique(__x); }
//在指定位置插入元素,但是会先遍历该集合,判断是否存在相同元素
//若不存在才在指定位置插入该元素
iterator insert(iterator position, const value_type& __x)
{ return _M_t.insert_unique(position, __x); }
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIterator>
void insert(_InputIterator __first, _InputIterator __last) {
_M_t.insert_unique(__first, __last);
}
#else
void insert(const value_type* __first, const value_type* __last) {
_M_t.insert_unique(__first, __last);
}
void insert(const_iterator __first, const_iterator __last) {
_M_t.insert_unique(__first, __last);
}
#endif /* __STL_MEMBER_TEMPLATES */
/*
擦除元素
void erase (iterator position);
size_type erase (const key_type& k);
void erase (iterator first, iterator last);
*/
//在指定位置擦除元素
void erase(iterator __position) { _M_t.erase(__position); }
//擦除指定键值的节点
size_type erase(const key_type& __x) { return _M_t.erase(__x); }
//擦除指定区间的节点
void erase(iterator __first, iterator __last)
{ _M_t.erase(__first, __last); }
//清空map
void clear() { _M_t.clear(); }
// map operations:
//查找指定键值的节点
iterator find(const key_type& __x) { return _M_t.find(__x); }
const_iterator find(const key_type& __x) const { return _M_t.find(__x); }
//计算指定键值元素的个数
size_type count(const key_type& __x) const {
return _M_t.find(__x) == _M_t.end() ? 0 : 1;
}
/*
Example:
#include <iostream>
#include <map>
int main ()
{
std::map<char,int> mymap;
std::map<char,int>::iterator itlow,itup;
mymap['a']=20;
mymap['b']=40;
mymap['c']=60;
mymap['d']=80;
mymap['e']=100;
itlow=mymap.lower_bound ('b'); // itlow points to b
itup=mymap.upper_bound ('d'); // itup points to e (not d!)
mymap.erase(itlow,itup); // erases [itlow,itup)
// print content:
for (std::map<char,int>::iterator it=mymap.begin(); it!=mymap.end(); ++it)
std::cout << it->first << " => " << it->second << '\n';
return 0;
}
Output:
a => 20
e => 100
*/
//Returns an iterator pointing to the first element in the container
//whose key is not considered to go before k (i.e., either it is equivalent or goes after).
//this->first is greater than or equivalent to __x.
iterator lower_bound(const key_type& __x) {return _M_t.lower_bound(__x); }
const_iterator lower_bound(const key_type& __x) const {
return _M_t.lower_bound(__x);
}
//Returns an iterator pointing to the first element that is greater than key.
iterator upper_bound(const key_type& __x) {return _M_t.upper_bound(__x); }
const_iterator upper_bound(const key_type& __x) const {
return _M_t.upper_bound(__x);
}
//Returns the bounds of a range that includes all the elements in the container
//which have a key equivalent to k
//Because the elements in a map container have unique keys,
//the range returned will contain a single element at most.
pair<iterator,iterator> equal_range(const key_type& __x) {
return _M_t.equal_range(__x);
}
pair<const_iterator,const_iterator> equal_range(const key_type& __x) const {
return _M_t.equal_range(__x);
}
/*
Example:
#include <iostream>
#include <map>
int main ()
{
std::map<char,int> mymap;
mymap['a']=10;
mymap['b']=20;
mymap['c']=30;
std::pair<std::map<char,int>::iterator,std::map<char,int>::iterator> ret;
ret = mymap.equal_range('b');
std::cout << "lower bound points to: ";
std::cout << ret.first->first << " => " << ret.first->second << '\n';
std::cout << "upper bound points to: ";
std::cout << ret.second->first << " => " << ret.second->second << '\n';
return 0;
}
Output:
lower bound points to: 'b' => 20
upper bound points to: 'c' => 30
*/
//以下是操作符重载
#ifdef __STL_TEMPLATE_FRIENDS
template <class _K1, class _T1, class _C1, class _A1>
friend bool operator== (const map<_K1, _T1, _C1, _A1>&,
const map<_K1, _T1, _C1, _A1>&);
template <class _K1, class _T1, class _C1, class _A1>
friend bool operator< (const map<_K1, _T1, _C1, _A1>&,
const map<_K1, _T1, _C1, _A1>&);
#else /* __STL_TEMPLATE_FRIENDS */
friend bool __STD_QUALIFIER
operator== __STL_NULL_TMPL_ARGS (const map&, const map&);
friend bool __STD_QUALIFIER
operator< __STL_NULL_TMPL_ARGS (const map&, const map&);
#endif /* __STL_TEMPLATE_FRIENDS */
};
//比较两个map的内容
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator==(const map<_Key,_Tp,_Compare,_Alloc>& __x,
const map<_Key,_Tp,_Compare,_Alloc>& __y) {
return __x._M_t == __y._M_t;
}
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator<(const map<_Key,_Tp,_Compare,_Alloc>& __x,
const map<_Key,_Tp,_Compare,_Alloc>& __y) {
return __x._M_t < __y._M_t;
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator!=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
const map<_Key,_Tp,_Compare,_Alloc>& __y) {
return !(__x == __y);
}
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator>(const map<_Key,_Tp,_Compare,_Alloc>& __x,
const map<_Key,_Tp,_Compare,_Alloc>& __y) {
return __y < __x;
}
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator<=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
const map<_Key,_Tp,_Compare,_Alloc>& __y) {
return !(__y < __x);
}
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator>=(const map<_Key,_Tp,_Compare,_Alloc>& __x,
const map<_Key,_Tp,_Compare,_Alloc>& __y) {
return !(__x < __y);
}
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline void swap(map<_Key,_Tp,_Compare,_Alloc>& __x,
map<_Key,_Tp,_Compare,_Alloc>& __y) {
__x.swap(__y);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#pragma reset woff 1375
#endif
__STL_END_NAMESPACE
#endif /* __SGI_STL_INTERNAL_MAP_H */
// Local Variables:
// mode:C++
// End:
~~~
参考资料:
《STL源码剖析》侯捷
《[STL源码剖析-- stl_map.h](http://blog.csdn.net/mdl13412/article/details/6655581)》