关联容器之multimap

最后更新于:2022-04-01 15:51:02

### 前言       multimap的特性及其用法和map完全相同,唯一的区别就是multimap允许键值key重复,因此multimap的插入操作采用的是底层RB-Tree的insert_equal()而非insert_unique(),有关map容器的介绍前往博文《[关联容器之map](http://blog.csdn.net/chenhanzhun/article/details/39529425)》。本文的源码出自SGI STL中的<stl_multimap.h>文件。 ### multimap容器源码剖析 ~~~ #ifndef __SGI_STL_INTERNAL_MULTIMAP_H #define __SGI_STL_INTERNAL_MULTIMAP_H #include <concept_checks.h> __STL_BEGIN_NAMESPACE #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) #pragma set woff 1174 #pragma set woff 1375 #endif // Forward declaration of operators < and ==, needed for friend declaration. //multimap的特性及其用法和map完全相同,唯一的区别就是multimap允许键值key重复 //因此multimap的插入操作采用的是底层RB-Tree的insert_equal()而非insert_unique() //有关map容器的剖析见前面博文 //map内部元素根据键值key默认使用递增排序less //用户可自行制定比较类型 //内部维护的数据结构是红黑树, 具有非常优秀的最坏情况的时间复杂度 //注意:multimap允许元素重复,即键值和实值都可以重复,这点与map不同 template <class _Key, class _Tp, class _Compare __STL_DEPENDENT_DEFAULT_TMPL(less<_Key>), class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) > class multimap; template <class _Key, class _Tp, class _Compare, class _Alloc> inline bool operator==(const multimap<_Key,_Tp,_Compare,_Alloc>& __x, const multimap<_Key,_Tp,_Compare,_Alloc>& __y); template <class _Key, class _Tp, class _Compare, class _Alloc> inline bool operator<(const multimap<_Key,_Tp,_Compare,_Alloc>& __x, const multimap<_Key,_Tp,_Compare,_Alloc>& __y); template <class _Key, class _Tp, class _Compare, class _Alloc> class multimap { // requirements: __STL_CLASS_REQUIRES(_Tp, _Assignable); __STL_CLASS_BINARY_FUNCTION_CHECK(_Compare, bool, _Key, _Key); public: // typedefs: //下面的定义与map相同 typedef _Key key_type; typedef _Tp data_type; typedef _Tp mapped_type; typedef pair<const _Key, _Tp> value_type; typedef _Compare key_compare; //嵌套类,提供键值key比较函数接口 //继承自<stl_function.h>中的binary_function /* template <class _Arg1, class _Arg2, class _Result> struct binary_function { typedef _Arg1 first_argument_type; typedef _Arg2 second_argument_type; typedef _Result result_type; }; */ class value_compare : public binary_function<value_type, value_type, bool> { friend class multimap<_Key,_Tp,_Compare,_Alloc>; protected: _Compare comp; value_compare(_Compare __c) : comp(__c) {} public: bool operator()(const value_type& __x, const value_type& __y) const { return comp(__x.first, __y.first); } }; private: //底层机制是RB-Tree typedef _Rb_tree<key_type, value_type, _Select1st<value_type>, key_compare, _Alloc> _Rep_type; _Rep_type _M_t; // red-black tree representing multimap public: typedef typename _Rep_type::pointer pointer; typedef typename _Rep_type::const_pointer const_pointer; typedef typename _Rep_type::reference reference; typedef typename _Rep_type::const_reference const_reference; //map的迭代器不直接定义为const_iterator,而是分别定义iterator,const_iterator //是因为map的键值key不能被修改,因为必须遵守比较函数的排序规则,所以必须定义为const_iterator //而map的实值value可以被修改,则定义为iterator typedef typename _Rep_type::iterator iterator; typedef typename _Rep_type::const_iterator const_iterator; typedef typename _Rep_type::reverse_iterator reverse_iterator; typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; typedef typename _Rep_type::size_type size_type; typedef typename _Rep_type::difference_type difference_type; typedef typename _Rep_type::allocator_type allocator_type; // allocation/deallocation // 注意:multimap只能使用RB-tree的insert-equal(),不能使用insert-unique() /* 构造函数 multimap(); explicit multimap (const key_compare& comp = key_compare(), const allocator_type& alloc = allocator_type()); template <class InputIterator> multimap (InputIterator first, InputIterator last, const key_compare& comp = key_compare(), const allocator_type& alloc = allocator_type()); multimap (const multimap& x); */ multimap() : _M_t(_Compare(), allocator_type()) { } explicit multimap(const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_t(__comp, __a) { } #ifdef __STL_MEMBER_TEMPLATES template <class _InputIterator> multimap(_InputIterator __first, _InputIterator __last) : _M_t(_Compare(), allocator_type()) { _M_t.insert_equal(__first, __last); } template <class _InputIterator> multimap(_InputIterator __first, _InputIterator __last, const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_t(__comp, __a) { _M_t.insert_equal(__first, __last); } #else multimap(const value_type* __first, const value_type* __last) : _M_t(_Compare(), allocator_type()) { _M_t.insert_equal(__first, __last); } multimap(const value_type* __first, const value_type* __last, const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_t(__comp, __a) { _M_t.insert_equal(__first, __last); } multimap(const_iterator __first, const_iterator __last) : _M_t(_Compare(), allocator_type()) { _M_t.insert_equal(__first, __last); } multimap(const_iterator __first, const_iterator __last, const _Compare& __comp, const allocator_type& __a = allocator_type()) : _M_t(__comp, __a) { _M_t.insert_equal(__first, __last); } #endif /* __STL_MEMBER_TEMPLATES */ //拷贝构造函数 multimap(const multimap<_Key,_Tp,_Compare,_Alloc>& __x) : _M_t(__x._M_t) { } //这里提供了operator=,即可以通过=初始化对象 multimap<_Key,_Tp,_Compare,_Alloc>& operator=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x) { _M_t = __x._M_t; return *this; } // accessors: //返回键值的比较函数,这里是调用RB-Tree的key_comp() key_compare key_comp() const { return _M_t.key_comp(); } //返回实值的比较函数 //这里调用的是map嵌套类中定义的比较函数 /* class value_compare : public binary_function<value_type, value_type, bool> { friend class map<_Key,_Tp,_Compare,_Alloc>; protected : _Compare comp; value_compare(_Compare __c) : comp(__c) {} public: bool operator()(const value_type& __x, const value_type& __y) const { return comp(__x.first, __y.first);//以键值调用比较函数 } */ //实际上最终还是调用键值key的比较函数,即他们是调用同一个比较函数 value_compare value_comp() const { return value_compare(_M_t.key_comp()); } allocator_type get_allocator() const { return _M_t.get_allocator(); } iterator begin() { return _M_t.begin(); } const_iterator begin() const { return _M_t.begin(); } iterator end() { return _M_t.end(); } const_iterator end() const { return _M_t.end(); } reverse_iterator rbegin() { return _M_t.rbegin(); } const_reverse_iterator rbegin() const { return _M_t.rbegin(); } reverse_iterator rend() { return _M_t.rend(); } const_reverse_iterator rend() const { return _M_t.rend(); } //判断容器multimap是否为空 bool empty() const { return _M_t.empty(); } //返回容器multimap的大小 size_type size() const { return _M_t.size(); } size_type max_size() const { return _M_t.max_size(); } //交换multimap对象的内容 void swap(multimap<_Key,_Tp,_Compare,_Alloc>& __x) { _M_t.swap(__x._M_t); } // insert/erase /* multimap只能使用RB-tree的insert-equal() 插入元素 iterator insert (const value_type& val); iterator insert (iterator position, const value_type& val); template <class InputIterator> void insert (InputIterator first, InputIterator last); */ //插入元素节点,调用RB-Tree的insert-equal(); //插入元素的键值key允许重复 iterator insert(const value_type& __x) { return _M_t.insert_equal(__x); } //在指定位置插入元素 iterator insert(iterator __position, const value_type& __x) { return _M_t.insert_equal(__position, __x); } #ifdef __STL_MEMBER_TEMPLATES //插入[first,last)元素 template <class _InputIterator> void insert(_InputIterator __first, _InputIterator __last) { _M_t.insert_equal(__first, __last); } #else void insert(const value_type* __first, const value_type* __last) { _M_t.insert_equal(__first, __last); } void insert(const_iterator __first, const_iterator __last) { _M_t.insert_equal(__first, __last); } #endif /* __STL_MEMBER_TEMPLATES */ /* 擦除元素 void erase (iterator position); size_type erase (const key_type& k); void erase (iterator first, iterator last); */ //在指定位置擦除元素 void erase(iterator __position) { _M_t.erase(__position); } //擦除指定键值的节点 size_type erase(const key_type& __x) { return _M_t.erase(__x); } //擦除指定区间的节点 void erase(iterator __first, iterator __last) { _M_t.erase(__first, __last); } //清空容器 void clear() { _M_t.clear(); } // multimap operations: //查找指定键值的节点 iterator find(const key_type& __x) { return _M_t.find(__x); } const_iterator find(const key_type& __x) const { return _M_t.find(__x); } //计算指定键值元素的个数 size_type count(const key_type& __x) const { return _M_t.count(__x); } //Returns an iterator pointing to the first element in the container //whose key is not considered to go before k (i.e., either it is equivalent or goes after). //this->first is greater than or equivalent to __x. iterator lower_bound(const key_type& __x) {return _M_t.lower_bound(__x); } const_iterator lower_bound(const key_type& __x) const { return _M_t.lower_bound(__x); } //Returns an iterator pointing to the first element that is greater than key. iterator upper_bound(const key_type& __x) {return _M_t.upper_bound(__x); } const_iterator upper_bound(const key_type& __x) const { return _M_t.upper_bound(__x); } //Returns the bounds of a range that includes all the elements in the container //which have a key equivalent to k //Because the elements in a map container have unique keys, //the range returned will contain a single element at most. pair<iterator,iterator> equal_range(const key_type& __x) { return _M_t.equal_range(__x); } pair<const_iterator,const_iterator> equal_range(const key_type& __x) const { return _M_t.equal_range(__x); } //以下是操作符重载 #ifdef __STL_TEMPLATE_FRIENDS template <class _K1, class _T1, class _C1, class _A1> friend bool operator== (const multimap<_K1, _T1, _C1, _A1>&, const multimap<_K1, _T1, _C1, _A1>&); template <class _K1, class _T1, class _C1, class _A1> friend bool operator< (const multimap<_K1, _T1, _C1, _A1>&, const multimap<_K1, _T1, _C1, _A1>&); #else /* __STL_TEMPLATE_FRIENDS */ friend bool __STD_QUALIFIER operator== __STL_NULL_TMPL_ARGS (const multimap&, const multimap&); friend bool __STD_QUALIFIER operator< __STL_NULL_TMPL_ARGS (const multimap&, const multimap&); #endif /* __STL_TEMPLATE_FRIENDS */ }; template <class _Key, class _Tp, class _Compare, class _Alloc> inline bool operator==(const multimap<_Key,_Tp,_Compare,_Alloc>& __x, const multimap<_Key,_Tp,_Compare,_Alloc>& __y) { return __x._M_t == __y._M_t; } template <class _Key, class _Tp, class _Compare, class _Alloc> inline bool operator<(const multimap<_Key,_Tp,_Compare,_Alloc>& __x, const multimap<_Key,_Tp,_Compare,_Alloc>& __y) { return __x._M_t < __y._M_t; } #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER template <class _Key, class _Tp, class _Compare, class _Alloc> inline bool operator!=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x, const multimap<_Key,_Tp,_Compare,_Alloc>& __y) { return !(__x == __y); } template <class _Key, class _Tp, class _Compare, class _Alloc> inline bool operator>(const multimap<_Key,_Tp,_Compare,_Alloc>& __x, const multimap<_Key,_Tp,_Compare,_Alloc>& __y) { return __y < __x; } template <class _Key, class _Tp, class _Compare, class _Alloc> inline bool operator<=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x, const multimap<_Key,_Tp,_Compare,_Alloc>& __y) { return !(__y < __x); } template <class _Key, class _Tp, class _Compare, class _Alloc> inline bool operator>=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x, const multimap<_Key,_Tp,_Compare,_Alloc>& __y) { return !(__x < __y); } template <class _Key, class _Tp, class _Compare, class _Alloc> inline void swap(multimap<_Key,_Tp,_Compare,_Alloc>& __x, multimap<_Key,_Tp,_Compare,_Alloc>& __y) { __x.swap(__y); } #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */ #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) #pragma reset woff 1174 #pragma reset woff 1375 #endif __STL_END_NAMESPACE #endif /* __SGI_STL_INTERNAL_MULTIMAP_H */ // Local Variables: // mode:C++ // End: ~~~ 参考资料: 《STL源码剖析》侯捷
';