关联容器之multimap
最后更新于:2022-04-01 15:51:02
### 前言
multimap的特性及其用法和map完全相同,唯一的区别就是multimap允许键值key重复,因此multimap的插入操作采用的是底层RB-Tree的insert_equal()而非insert_unique(),有关map容器的介绍前往博文《[关联容器之map](http://blog.csdn.net/chenhanzhun/article/details/39529425)》。本文的源码出自SGI STL中的<stl_multimap.h>文件。
### multimap容器源码剖析
~~~
#ifndef __SGI_STL_INTERNAL_MULTIMAP_H
#define __SGI_STL_INTERNAL_MULTIMAP_H
#include <concept_checks.h>
__STL_BEGIN_NAMESPACE
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#pragma set woff 1375
#endif
// Forward declaration of operators < and ==, needed for friend declaration.
//multimap的特性及其用法和map完全相同,唯一的区别就是multimap允许键值key重复
//因此multimap的插入操作采用的是底层RB-Tree的insert_equal()而非insert_unique()
//有关map容器的剖析见前面博文
//map内部元素根据键值key默认使用递增排序less
//用户可自行制定比较类型
//内部维护的数据结构是红黑树, 具有非常优秀的最坏情况的时间复杂度
//注意:multimap允许元素重复,即键值和实值都可以重复,这点与map不同
template <class _Key, class _Tp,
class _Compare __STL_DEPENDENT_DEFAULT_TMPL(less<_Key>),
class _Alloc = __STL_DEFAULT_ALLOCATOR(_Tp) >
class multimap;
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator==(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
const multimap<_Key,_Tp,_Compare,_Alloc>& __y);
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator<(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
const multimap<_Key,_Tp,_Compare,_Alloc>& __y);
template <class _Key, class _Tp, class _Compare, class _Alloc>
class multimap {
// requirements:
__STL_CLASS_REQUIRES(_Tp, _Assignable);
__STL_CLASS_BINARY_FUNCTION_CHECK(_Compare, bool, _Key, _Key);
public:
// typedefs:
//下面的定义与map相同
typedef _Key key_type;
typedef _Tp data_type;
typedef _Tp mapped_type;
typedef pair<const _Key, _Tp> value_type;
typedef _Compare key_compare;
//嵌套类,提供键值key比较函数接口
//继承自<stl_function.h>中的binary_function
/*
template <class _Arg1, class _Arg2, class _Result>
struct binary_function {
typedef _Arg1 first_argument_type;
typedef _Arg2 second_argument_type;
typedef _Result result_type;
};
*/
class value_compare : public binary_function<value_type, value_type, bool> {
friend class multimap<_Key,_Tp,_Compare,_Alloc>;
protected:
_Compare comp;
value_compare(_Compare __c) : comp(__c) {}
public:
bool operator()(const value_type& __x, const value_type& __y) const {
return comp(__x.first, __y.first);
}
};
private:
//底层机制是RB-Tree
typedef _Rb_tree<key_type, value_type,
_Select1st<value_type>, key_compare, _Alloc> _Rep_type;
_Rep_type _M_t; // red-black tree representing multimap
public:
typedef typename _Rep_type::pointer pointer;
typedef typename _Rep_type::const_pointer const_pointer;
typedef typename _Rep_type::reference reference;
typedef typename _Rep_type::const_reference const_reference;
//map的迭代器不直接定义为const_iterator,而是分别定义iterator,const_iterator
//是因为map的键值key不能被修改,因为必须遵守比较函数的排序规则,所以必须定义为const_iterator
//而map的实值value可以被修改,则定义为iterator
typedef typename _Rep_type::iterator iterator;
typedef typename _Rep_type::const_iterator const_iterator;
typedef typename _Rep_type::reverse_iterator reverse_iterator;
typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator;
typedef typename _Rep_type::size_type size_type;
typedef typename _Rep_type::difference_type difference_type;
typedef typename _Rep_type::allocator_type allocator_type;
// allocation/deallocation
// 注意:multimap只能使用RB-tree的insert-equal(),不能使用insert-unique()
/*
构造函数
multimap();
explicit multimap (const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());
template <class InputIterator>
multimap (InputIterator first, InputIterator last,
const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());
multimap (const multimap& x);
*/
multimap() : _M_t(_Compare(), allocator_type()) { }
explicit multimap(const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { }
#ifdef __STL_MEMBER_TEMPLATES
template <class _InputIterator>
multimap(_InputIterator __first, _InputIterator __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_equal(__first, __last); }
template <class _InputIterator>
multimap(_InputIterator __first, _InputIterator __last,
const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { _M_t.insert_equal(__first, __last); }
#else
multimap(const value_type* __first, const value_type* __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_equal(__first, __last); }
multimap(const value_type* __first, const value_type* __last,
const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { _M_t.insert_equal(__first, __last); }
multimap(const_iterator __first, const_iterator __last)
: _M_t(_Compare(), allocator_type())
{ _M_t.insert_equal(__first, __last); }
multimap(const_iterator __first, const_iterator __last,
const _Compare& __comp,
const allocator_type& __a = allocator_type())
: _M_t(__comp, __a) { _M_t.insert_equal(__first, __last); }
#endif /* __STL_MEMBER_TEMPLATES */
//拷贝构造函数
multimap(const multimap<_Key,_Tp,_Compare,_Alloc>& __x) : _M_t(__x._M_t) { }
//这里提供了operator=,即可以通过=初始化对象
multimap<_Key,_Tp,_Compare,_Alloc>&
operator=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x) {
_M_t = __x._M_t;
return *this;
}
// accessors:
//返回键值的比较函数,这里是调用RB-Tree的key_comp()
key_compare key_comp() const { return _M_t.key_comp(); }
//返回实值的比较函数
//这里调用的是map嵌套类中定义的比较函数
/*
class value_compare
: public binary_function<value_type, value_type, bool> {
friend class map<_Key,_Tp,_Compare,_Alloc>;
protected :
_Compare comp;
value_compare(_Compare __c) : comp(__c) {}
public:
bool operator()(const value_type& __x, const value_type& __y) const {
return comp(__x.first, __y.first);//以键值调用比较函数
}
*/
//实际上最终还是调用键值key的比较函数,即他们是调用同一个比较函数
value_compare value_comp() const { return value_compare(_M_t.key_comp()); }
allocator_type get_allocator() const { return _M_t.get_allocator(); }
iterator begin() { return _M_t.begin(); }
const_iterator begin() const { return _M_t.begin(); }
iterator end() { return _M_t.end(); }
const_iterator end() const { return _M_t.end(); }
reverse_iterator rbegin() { return _M_t.rbegin(); }
const_reverse_iterator rbegin() const { return _M_t.rbegin(); }
reverse_iterator rend() { return _M_t.rend(); }
const_reverse_iterator rend() const { return _M_t.rend(); }
//判断容器multimap是否为空
bool empty() const { return _M_t.empty(); }
//返回容器multimap的大小
size_type size() const { return _M_t.size(); }
size_type max_size() const { return _M_t.max_size(); }
//交换multimap对象的内容
void swap(multimap<_Key,_Tp,_Compare,_Alloc>& __x) { _M_t.swap(__x._M_t); }
// insert/erase
/*
multimap只能使用RB-tree的insert-equal()
插入元素
iterator insert (const value_type& val);
iterator insert (iterator position, const value_type& val);
template <class InputIterator>
void insert (InputIterator first, InputIterator last);
*/
//插入元素节点,调用RB-Tree的insert-equal();
//插入元素的键值key允许重复
iterator insert(const value_type& __x) { return _M_t.insert_equal(__x); }
//在指定位置插入元素
iterator insert(iterator __position, const value_type& __x) {
return _M_t.insert_equal(__position, __x);
}
#ifdef __STL_MEMBER_TEMPLATES
//插入[first,last)元素
template <class _InputIterator>
void insert(_InputIterator __first, _InputIterator __last) {
_M_t.insert_equal(__first, __last);
}
#else
void insert(const value_type* __first, const value_type* __last) {
_M_t.insert_equal(__first, __last);
}
void insert(const_iterator __first, const_iterator __last) {
_M_t.insert_equal(__first, __last);
}
#endif /* __STL_MEMBER_TEMPLATES */
/*
擦除元素
void erase (iterator position);
size_type erase (const key_type& k);
void erase (iterator first, iterator last);
*/
//在指定位置擦除元素
void erase(iterator __position) { _M_t.erase(__position); }
//擦除指定键值的节点
size_type erase(const key_type& __x) { return _M_t.erase(__x); }
//擦除指定区间的节点
void erase(iterator __first, iterator __last)
{ _M_t.erase(__first, __last); }
//清空容器
void clear() { _M_t.clear(); }
// multimap operations:
//查找指定键值的节点
iterator find(const key_type& __x) { return _M_t.find(__x); }
const_iterator find(const key_type& __x) const { return _M_t.find(__x); }
//计算指定键值元素的个数
size_type count(const key_type& __x) const { return _M_t.count(__x); }
//Returns an iterator pointing to the first element in the container
//whose key is not considered to go before k (i.e., either it is equivalent or goes after).
//this->first is greater than or equivalent to __x.
iterator lower_bound(const key_type& __x) {return _M_t.lower_bound(__x); }
const_iterator lower_bound(const key_type& __x) const {
return _M_t.lower_bound(__x);
}
//Returns an iterator pointing to the first element that is greater than key.
iterator upper_bound(const key_type& __x) {return _M_t.upper_bound(__x); }
const_iterator upper_bound(const key_type& __x) const {
return _M_t.upper_bound(__x);
}
//Returns the bounds of a range that includes all the elements in the container
//which have a key equivalent to k
//Because the elements in a map container have unique keys,
//the range returned will contain a single element at most.
pair<iterator,iterator> equal_range(const key_type& __x) {
return _M_t.equal_range(__x);
}
pair<const_iterator,const_iterator> equal_range(const key_type& __x) const {
return _M_t.equal_range(__x);
}
//以下是操作符重载
#ifdef __STL_TEMPLATE_FRIENDS
template <class _K1, class _T1, class _C1, class _A1>
friend bool operator== (const multimap<_K1, _T1, _C1, _A1>&,
const multimap<_K1, _T1, _C1, _A1>&);
template <class _K1, class _T1, class _C1, class _A1>
friend bool operator< (const multimap<_K1, _T1, _C1, _A1>&,
const multimap<_K1, _T1, _C1, _A1>&);
#else /* __STL_TEMPLATE_FRIENDS */
friend bool __STD_QUALIFIER
operator== __STL_NULL_TMPL_ARGS (const multimap&, const multimap&);
friend bool __STD_QUALIFIER
operator< __STL_NULL_TMPL_ARGS (const multimap&, const multimap&);
#endif /* __STL_TEMPLATE_FRIENDS */
};
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator==(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
return __x._M_t == __y._M_t;
}
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator<(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
return __x._M_t < __y._M_t;
}
#ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator!=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
return !(__x == __y);
}
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator>(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
return __y < __x;
}
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator<=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
return !(__y < __x);
}
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline bool operator>=(const multimap<_Key,_Tp,_Compare,_Alloc>& __x,
const multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
return !(__x < __y);
}
template <class _Key, class _Tp, class _Compare, class _Alloc>
inline void swap(multimap<_Key,_Tp,_Compare,_Alloc>& __x,
multimap<_Key,_Tp,_Compare,_Alloc>& __y) {
__x.swap(__y);
}
#endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */
#if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#pragma reset woff 1375
#endif
__STL_END_NAMESPACE
#endif /* __SGI_STL_INTERNAL_MULTIMAP_H */
// Local Variables:
// mode:C++
// End:
~~~
参考资料:
《STL源码剖析》侯捷