Matplotlib 绘制多图

最后更新于:2022-03-27 02:57:58

Matplotlib 绘制多图

我们可以使用 pyplot 中的 subplot()subplots() 方法来绘制多个子图。

subplot() 方法在绘图时需要指定位置,subplots() 方法可以一次生成多个,在调用时只需要调用生成对象的 ax 即可。

subplot

subplot(nrows, ncols, index, **kwargs)
subplot(pos, **kwargs)
subplot(**kwargs)
subplot(ax)

以上函数将整个绘图区域分成 nrows 行和 ncols 列,然后从左到右,从上到下的顺序对每个子区域进行编号 1…N ,左上的子区域的编号为 1、右下的区域编号为 N,编号可以通过参数 index 来设置。

设置 numRows = 1,numCols = 2,就是将图表绘制成 1×2 的图片区域, 对应的坐标为:

(1, 1), (1, 2)

plotNum = 1, 表示的坐标为(1, 1), 即第一行第一列的子图。

plotNum = 2, 表示的坐标为(1, 2), 即第一行第二列的子图。

实例

import matplotlib.pyplot as plt
import numpy as np

#plot 1:
xpoints = np.array([0, 6])
ypoints = np.array([0, 100])

plt.subplot(1, 2, 1)
plt.plot(xpoints,ypoints)
plt.title("plot 1")

#plot 2:
x = np.array([1, 2, 3, 4])
y = np.array([1, 4, 9, 16])

plt.subplot(1, 2, 2)
plt.plot(x,y)
plt.title("plot 2")

plt.suptitle("RUNOOB subplot Test")
plt.show()

显示结果如下:

设置 numRows = 2,numCols = 2,就是将图表绘制成 2×2 的图片区域, 对应的坐标为:

(1, 1), (1, 2)
(2, 1), (2, 2)

plotNum = 1, 表示的坐标为(1, 1), 即第一行第一列的子图。

plotNum = 2, 表示的坐标为(1, 2), 即第一行第二列的子图。

plotNum = 3, 表示的坐标为(2, 1), 即第二行第一列的子图。

plotNum = 4, 表示的坐标为(2, 2), 即第二行第二列的子图。

实例

import matplotlib.pyplot as plt
import numpy as np

#plot 1:
x = np.array([0, 6])
y = np.array([0, 100])

plt.subplot(2, 2, 1)
plt.plot(x,y)
plt.title("plot 1")

#plot 2:
x = np.array([1, 2, 3, 4])
y = np.array([1, 4, 9, 16])

plt.subplot(2, 2, 2)
plt.plot(x,y)
plt.title("plot 2")

#plot 3:
x = np.array([1, 2, 3, 4])
y = np.array([3, 5, 7, 9])

plt.subplot(2, 2, 3)
plt.plot(x,y)
plt.title("plot 3")

#plot 4:
x = np.array([1, 2, 3, 4])
y = np.array([4, 5, 6, 7])

plt.subplot(2, 2, 4)
plt.plot(x,y)
plt.title("plot 4")

plt.suptitle("RUNOOB subplot Test")
plt.show()

显示结果如下:

subplots()

subplots() 方法语法格式如下:

matplotlib.pyplot.subplots(nrows=1, ncols=1, *, sharex=False, sharey=False, squeeze=True, subplot_kw=None, gridspec_kw=None, **fig_kw)

参数说明:

  • nrows:默认为 1,设置图表的行数。
  • ncols:默认为 1,设置图表的列数。
  • sharex、sharey:设置 x、y 轴是否共享属性,默认为 false,可设置为 ‘none’、’all’、’row’ 或 ‘col’。
    False 或 none 每个子图的 x 轴或 y 轴都是独立的,True 或 ‘all’:所有子图共享 x 轴或 y 轴,’row’ 设置每个子图行共享一个 x 轴或 y 轴,’col’:设置每个子图列共享一个 x 轴或 y 轴。
  • squeeze:布尔值,默认为 True,表示额外的维度从返回的 Axes(轴)对象中挤出,对于 N*1 或 1*N 个子图,返回一个 1 维数组,对于 N*M,N>1 和 M>1 返回一个 2 维数组。如果设置为 False,则不进行挤压操作,返回一个元素为 Axes 实例的2维数组,即使它最终是1×1。
  • subplot_kw:可选,字典类型。把字典的关键字传递给 add_subplot() 来创建每个子图。
  • gridspec_kw:可选,字典类型。把字典的关键字传递给 GridSpec 构造函数创建子图放在网格里(grid)。
  • **fig_kw:把详细的关键字参数传给 figure() 函数。

实例

import matplotlib.pyplot as plt
import numpy as np

# 创建一些测试数据 — 图1
x = np.linspace(0, 2*np.pi, 400)
y = np.sin(x**2)

# 创建一个画像和子图 — 图2
fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_title(‘Simple plot’)

# 创建两个子图 — 图3
f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
ax1.plot(x, y)
ax1.set_title(‘Sharing Y axis’)
ax2.scatter(x, y)

# 创建四个子图 — 图4
fig, axs = plt.subplots(2, 2, subplot_kw=dict(projection="polar"))
axs[0, 0].plot(x, y)
axs[1, 1].scatter(x, y)

# 共享 x 轴
plt.subplots(2, 2, sharex=‘col’)

# 共享 y 轴
plt.subplots(2, 2, sharey=‘row’)

# 共享 x 轴和 y 轴
plt.subplots(2, 2, sharex=‘all’, sharey=‘all’)

# 这个也是共享 x 轴和 y 轴
plt.subplots(2, 2, sharex=True, sharey=True)

# 创建10 张图,已经存在的则删除
fig, ax = plt.subplots(num=10, clear=True)

plt.show()

部分图表显示结果如下:

图1

图2

图3

图4