vector的遍历(stl算法、vector迭代器(不要在循环中判断不等于end())、operator[])
最后更新于:2022-04-01 06:44:26
## 实战c++中的vector系列--vector的遍历(stl算法、vector迭代器(不要在循环中判断不等于end())、operator[])
遍历一个vector容器有很多种方法,使用起来也是仁者见仁。
通过索引遍历:
~~~
for (i = 0; i<v.size(); i++)
{
cout << v[i] << " ";
}
~~~
迭代器遍历:
~~~
for (vInt::const_iterator iter = v.begin(); iter != v.end();iter++)
{
cout << *iter << " ";
}
~~~
算法遍历:
~~~
copy(v.begin(), v.end(), ostream_iterator<int>(cout, " "));
~~~
很多书上推荐的是使用算法进行遍历。写了一个简单的程序对上面的三种方法进行了比较:
~~~
#include<iostream>
#include<vector>
#include<iterator>
#include<algorithm>
#include<time.h>
#include<windows.h>
using namespace std;
typedef vector<int> vInt;
void print_vec_operator(const vInt & v)//方法一,采用下标访问
{
int i;
for (i = 0; i<v.size(); i++)
{
cout << v[i] << " ";
}
cout << endl;
}
void print_vec_iterator(const vInt &v)//方法二,采用迭代器访问
{
for (vInt::const_iterator iter = v.begin(); iter != v.end();iter++)
{
cout << *iter << " ";
}
cout << endl;
}
void print_vec_algorithm(const vInt &v)//方法三,将容器的内容复制到cout绑定的迭代器
{
copy(v.begin(), v.end(), ostream_iterator<int>(cout, " "));
cout << endl;
}
int main()
{
vInt v;
int i;
for (i = 0; i<100000; i++)
{
v.push_back(i);
}
int start_time_print_vec1 = GetTickCount();
print_vec_operator(v);
int end_time_print_vec1 = GetTickCount();
int start_time_print_vec2 = GetTickCount();
print_vec_iterator(v);
int end_time_print_vec2 = GetTickCount();
int start_time_print_vec3 = GetTickCount();
print_vec_algorithm(v);
int end_time_print_vec3 = GetTickCount();
std::cout << (end_time_print_vec1 - start_time_print_vec1) << endl;
std::cout << (end_time_print_vec2 - start_time_print_vec2) << endl;
std::cout << (end_time_print_vec3 - start_time_print_vec3) << endl;
return 0;
}
~~~
当vector初始化10000个元素时,三种方法的效率不相上下,运行几次时间相差无几:
//输出:
//1718 operator[]
//1735 iterator
//1797 algorithm
但是当把veector初始化100000的时候,三种方法的效率就有了较大的差距:
//输出:
//20016 operator[]
//32172 iterator
//62468 algorithm
再写一个vector里放一个类:
~~~
#include<iostream>
#include<vector>
#include<iterator>
#include <algorithm>
#include <functional>
#include<windows.h>
class AAA
{
public:
void MakeFull2()
{
}
};
int main()
{
int nCount = 1000000;
std::vector< AAA* > vAAA;
vAAA.resize(nCount);
for (int i = 0; i < nCount; ++i)
{
vAAA[i] = new AAA;
}
// 时间
int start, end;
// 测试成员函数调用(std::vector下标访问方式)
start = GetTickCount();
size_t count = vAAA.size();
for (size_t i = 0; i < count; ++i)
vAAA[i]->MakeFull2();
end = GetTickCount();
std::cout << end - start << std::endl;
// 测试成员函数调用(STL算法方式)
start = GetTickCount();
std::for_each(vAAA.begin(), vAAA.end(),
std::mem_fun<void, AAA>(&AAA::MakeFull2));
end = GetTickCount();
std::cout << end - start << std::endl;
// 测试成员函数调用(STL迭代器方式)
start = GetTickCount();
std::vector< AAA* >::iterator itr_end = vAAA.end();
for (std::vector< AAA* >::iterator itr = vAAA.begin(); itr != itr_end; ++itr)
(*itr)->MakeFull2();
end = GetTickCount();
std::cout << end - start << std::endl;
// 测试成员函数调用(STL迭代器方式)
start = GetTickCount();
for (std::vector< AAA* >::iterator itr = vAAA.begin(); itr != vAAA.end(); ++itr)
(*itr)->MakeFull2();
end = GetTickCount();
std::cout << end - start << std::endl;
return 0;
}
//输出:
//313 oprator[]
//62 algorithm
//422 iterator
//922 iterator
~~~
再运行一次,结果为:
//296
//63
//594
//1672
这个时候使用algorithm+functional进行遍历效率最高。
个人觉得下标索引的方式总是会效率高于迭代器方式。
下面分析一下两种迭代器方式,为何相差不小呢:
这就要看一下std::vector::end()的原型了:
~~~
iterator end() _NOEXCEPT
{ // return iterator for end of mutable sequence
return (iterator(this->_Mylast(), &this->_Get_data()));
}
~~~
就是每次判断itr != vAAA.end()的时候,都要进行重新构造一个迭代器并进行返回,这样当然降低的效率。