FFT卷积的速度比较

最后更新于:2022-04-01 11:16:08

# FFT卷积的速度比较 相关文档: [_频域信号处理_](frequency_process.html) 直接卷积的复杂度为O(N*N),FFT的复杂度为O(N*log(N)),此程序分别计算直接卷积和快速卷积的耗时曲线。请注意Y轴为每点的平均运算时间。 ![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-03-19_56ed1bb5a73d7.png) ``` # -*- coding: utf-8 -*- import numpy as np import timeit def fft_convolve(a,b): n = len(a)+len(b)-1 N = 2**(int(np.log2(n))+1) A = np.fft.fft(a, N) B = np.fft.fft(b, N) return np.fft.ifft(A*B)[:n] if __name__ == "__main__": from pylab import * n_list = [] t1_list = [] t2_list = [] for n in xrange(4, 14): N = 2**n count = 10000**2 / N**2 if count > 10000: count = 10000 setup = """ import numpy as np from __main__ import fft_convolve a = np.random.rand(%s) b = np.random.rand(%s) """ % (N, N) t1 = timeit.timeit("np.convolve(a,b)", setup, number=count) t2 = timeit.timeit("fft_convolve(a,b)", setup, number=count) t1_list.append(t1*1000/count/N) t2_list.append(t2*1000/count/N) n_list.append(N) figure(figsize=(8,4)) plot(n_list, t1_list, label=u"直接卷积") plot(n_list, t2_list, label=u"FFT卷积") legend() title(u"卷积的计算时间") ylabel(u"计算时间(ms/point)") xlabel(u"长度") xlim(min(n_list),max(n_list)) show() ```
';