双摆系统的动画模拟

最后更新于:2022-04-01 11:16:15

# 双摆系统的动画模拟 相关文档: [_单摆和双摆模拟_](double_pendulum.html) ![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-03-19_56ed1bba2d608.png) ![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-03-19_56ed1bba3f9f8.png) ## 用odeint解双摆系统 文件名: double_pendulum_odeint.py ``` # -*- coding: utf-8 -*- from math import sin,cos import numpy as np from scipy.integrate import odeint g = 9.8 class DoublePendulum(object): def __init__(self, m1, m2, l1, l2): self.m1, self.m2, self.l1, self.l2 = m1, m2, l1, l2 self.init_status = np.array([0.0,0.0,0.0,0.0]) def equations(self, w, t): """ 微分方程公式 """ m1, m2, l1, l2 = self.m1, self.m2, self.l1, self.l2 th1, th2, v1, v2 = w dth1 = v1 dth2 = v2 #eq of th1 a = l1*l1*(m1+m2) # dv1 parameter b = l1*m2*l2*cos(th1-th2) # dv2 paramter c = l1*(m2*l2*sin(th1-th2)*dth2*dth2 + (m1+m2)*g*sin(th1)) #eq of th2 d = m2*l2*l1*cos(th1-th2) # dv1 parameter e = m2*l2*l2 # dv2 parameter f = m2*l2*(-l1*sin(th1-th2)*dth1*dth1 + g*sin(th2)) dv1, dv2 = np.linalg.solve([[a,b],[d,e]], [-c,-f]) return np.array([dth1, dth2, dv1, dv2]) def double_pendulum_odeint(pendulum, ts, te, tstep): """ 对双摆系统的微分方程组进行数值求解,返回两个小球的X-Y坐标 """ t = np.arange(ts, te, tstep) track = odeint(pendulum.equations, pendulum.init_status, t) th1_array, th2_array = track[:,0], track[:, 1] l1, l2 = pendulum.l1, pendulum.l2 x1 = l1*np.sin(th1_array) y1 = -l1*np.cos(th1_array) x2 = x1 + l2*np.sin(th2_array) y2 = y1 - l2*np.cos(th2_array) pendulum.init_status = track[-1,:].copy() #将最后的状态赋给pendulum return [x1, y1, x2, y2] if __name__ == "__main__": import matplotlib.pyplot as pl pendulum = DoublePendulum(1.0, 2.0, 1.0, 2.0) th1, th2 = 1.0, 2.0 pendulum.init_status[:2] = th1, th2 x1, y1, x2, y2 = double_pendulum_odeint(pendulum, 0, 30, 0.02) pl.plot(x1,y1, label = u"上球") pl.plot(x2,y2, label = u"下球") pl.title(u"双摆系统的轨迹, 初始角度=%s,%s" % (th1, th2)) pl.legend() pl.axis("equal") pl.show() ``` ## 摆动动画 文件名: double_pendulum_animation.py ``` # -*- coding: utf-8 -*- import matplotlib matplotlib.use('WXAgg') # do this before importing pylab import matplotlib.pyplot as pl from double_pendulum_odeint import double_pendulum_odeint, DoublePendulum fig = pl.figure(figsize=(4,4)) line1, = pl.plot([0,0], [0,0], "-o") line2, = pl.plot([0,0], [0,0], "-o") pl.axis("equal") pl.xlim(-4,4) pl.ylim(-4,2) pendulum = DoublePendulum(1.0, 2.0, 1.0, 2.0) pendulum.init_status[:] = 1.0, 2.0, 0, 0 x1, y1, x2, y2 = [],[],[],[] idx = 0 def update_line(event): global x1, x2, y1, y2, idx if idx == len(x1): x1, y1, x2, y2 = double_pendulum_odeint(pendulum, 0, 1, 0.05) idx = 0 line1.set_xdata([0, x1[idx]]) line1.set_ydata([0, y1[idx]]) line2.set_xdata([x1[idx], x2[idx]]) line2.set_ydata([y1[idx], y2[idx]]) fig.canvas.draw() idx += 1 import wx id = wx.NewId() actor = fig.canvas.manager.frame timer = wx.Timer(actor, id=id) timer.Start(1) wx.EVT_TIMER(actor, id, update_line) pl.show() ```
';