5.3.2 常用同步类
最后更新于:2022-04-02 05:49:58
同步,是多线程编程中不可回避的话题,同时也是一个非常复杂的问题。这里,只简单介绍一下Android提供的同步类。这些类,只对系统提供的多线程同步函数(这种函数我们也称之为Raw API)进行了面向对象的封装,读者必须先理解Raw API,然后才能真正掌握其具体用法。
* * * * *
**提示**:了解Windows下的多线程编程,有很多参考资料,但我以为,现在先学习MSDN就可以了。有关Linux下完整系统阐述多线程编程的书籍目前较少,这里推荐一本含金量较高的著作《Programmingwith POSIX Thread》(本书只有英文版的,由Addison-Wesley出版)。
* * * * *
Android提供了两个封装好的同步类,它们是Mutex和Condition。这是重量级的同步技术,一般内核会有对应的支持。另外,OS还提供了简单的原子操作,这些也算是同步技术的一种。下面分别来介绍这三种东西。
1. 互斥类——Mutex
Mutex是互斥类,用于多线程访问同一个资源的时候,保证一次只能有一个线程能访问该资源。在《Windows核心编程》一书中,对于这种互斥访问有一个很形象的比喻:想象你在飞机上如厕,这时卫生间的信息牌上显示“有人”,你必须等里边的人出来后才可进去。这就是互斥的含义。
下面来看Mutex的实现方式,它们都很简单。
(1)Mutex介绍
其代码如下所示:
**Thread.h::Mutex的声明和实现**
~~~
inline Mutex::Mutex(int type, const char* name){
if(type == SHARED) {
//type如果是SHARED,则表明这个Mutex支持跨进程的线程同步
//以后我们在Audio系统和Surface系统中会经常见到这种用法
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
pthread_mutex_init(&mMutex, &attr);
pthread_mutexattr_destroy(&attr);
} else {
pthread_mutex_init(&mMutex, NULL);
}
}
inline Mutex::~Mutex() {
pthread_mutex_destroy(&mMutex);
}
inline status_t Mutex::lock() {
return-pthread_mutex_lock(&mMutex);
}
inline void Mutex::unlock() {
pthread_mutex_unlock(&mMutex);
}
inline status_t Mutex::tryLock() {
return-pthread_mutex_trylock(&mMutex);
}
~~~
关于Mutex的使用,除了初始化外,最重要的是lock和unlock函数的使用,它们的用法如下:
- 要想独占卫生间,必须先调用Mutex的lock函数。这样,这个区域就被锁住了。如果这块区域之前已被别人锁住,lock函数则会等待,直到可以进入这块区域为止。系统保证一次只有一个线程能lock成功。
- 当你“方便”完毕,记得调用Mutex的unlock以释放互斥区域。这样,其他人的lock才可以成功返回。
- 另外,Mutex还提供了一个trylock函数,该函数只是尝试去锁住该区域,使用者需要根据trylock的返回值判断是否成功锁住了该区域。
* * * * *
**注意**:以上这些内容都和Raw API有关,不了解它的读者可自行学习与它相关的知识。在Android系统中,多线程也是常见和重要的编程手段,务请大家重视。
* * * * *
Mutex类确实比Raw API方便好用,不过还是稍显麻烦。来看下一节。
(2)AutoLock介绍
AutoLock类是定义在Mutex内部的一个类,它其实是一帮“懒人”搞出来的,为什么这么说呢?先来看看使用Mutex够多麻烦:
- 显示调用Mutex的lock。
- 在某个时候要记住调用该Mutex的unlock。
以上这些操作都必须一一对应,否则会出现“死锁”!有些代码中,在判断分支特别多的情况下,unlock这句代码被写得比比皆是,如稍有不慎,在某处就会忘写了它。有什么好办法能解决这个问题吗?终于有人想出来一个好办法,就是充分利用了C++的构造和析构函数,只需一看AutoLock的定义就会明白。代码如下所示:
**Thread.h Mutex::Autolock声明和实现**
~~~
classAutolock {
public:
//构造的时候调用lock
inline Autolock(Mutex& mutex) : mLock(mutex) { mLock.lock(); }
inline Autolock(Mutex* mutex) : mLock(*mutex) { mLock.lock(); }
//析构的时候调用unlock
inline ~Autolock() { mLock.unlock(); }
private:
Mutex& mLock;
};
~~~
AutoLock的用法很简单:
- 先定义一个Mutex,如 Mutex xlock;
- 在使用xlock的地方,定义一个AutoLock,如 AutoLock autoLock(xlock)。
由于C++对象的构造和析构函数都是自动被调用的,所以在AutoLock的生命周期内,xlock的lock和unlock也就自动被调用了,这样就省去了重复书写unlock的麻烦,而且lock和unlock的调用肯定是一一对应的,这样就绝对不会出错。
2. 条件类——Condition
多线程同步中的条件类对应的是下面一种使用场景:
- 线程A做初始化工作,而其他线程比如线程B、C必须等到初始化工作完后才能工作,即线程B、C在等待一个条件,我们称B、C为等待者。
- 当线程A完成初始化工作时,会触发这个条件,那么等待者B、C就会被唤醒。触发这个条件的A就是触发者。
上面的使用场景非常形象,而且条件类提供的函数也非常形象,它的代码如下所示:
**Thread.h::Condition的声明和实现**
~~~
class Condition {
public:
enum {
PRIVATE = 0,
SHARED = 1
};
Condition();
Condition(int type);//如果type是SHARED,表示支持跨进程的条件同步
~Condition();
//线程B和C等待事件,wait这个名字是不是很形象呢?
status_t wait(Mutex& mutex);
//线程B和C的超时等待,B和C可以指定等待时间,当超过这个时间,条件却还不满足,则退出等待
status_t waitRelative(Mutex& mutex, nsecs_t reltime);
//触发者A用来通知条件已经满足,但是B和C只有一个会被唤醒
voidsignal();
//触发者A用来通知条件已经满足,所有等待者都会被唤醒
voidbroadcast();
private:
#if defined(HAVE_PTHREADS)
pthread_cond_t mCond;
#else
void* mState;
#endif
}
~~~
声明很简单,定义也很简单,代码如下所示:
~~~
inline Condition::Condition() {
pthread_cond_init(&mCond, NULL);
}
inline Condition::Condition(int type) {
if(type == SHARED) {//设置跨进程的同步支持
pthread_condattr_t attr;
pthread_condattr_init(&attr);
pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
pthread_cond_init(&mCond, &attr);
pthread_condattr_destroy(&attr);
} else{
pthread_cond_init(&mCond, NULL);
}
}
inline Condition::~Condition() {
pthread_cond_destroy(&mCond);
}
inline status_t Condition::wait(Mutex&mutex) {
return-pthread_cond_wait(&mCond, &mutex.mMutex);
}
inline status_tCondition::waitRelative(Mutex& mutex, nsecs_t reltime) {
#if defined(HAVE_PTHREAD_COND_TIMEDWAIT_RELATIVE)
structtimespec ts;
ts.tv_sec = reltime/1000000000;
ts.tv_nsec = reltime%1000000000;
return-pthread_cond_timedwait_relative_np(&mCond, &mutex.mMutex, &ts);
...... //有些系统没有实现POSIX的相关函数,所以不同系统需要调用不同的函数
#endif
}
inline void Condition::signal() {
pthread_cond_signal(&mCond);
}
inline void Condition::broadcast() {
pthread_cond_broadcast(&mCond);
}
~~~
可以看出,Condition的实现全是凭借调用了Raw API的pthread_cond_xxx函数。这里要重点说明的是,Condition类必须配合Mutex来使用。什么意思?
- 上面代码中,不论是wait、waitRelative、signal还是broadcast的调用,都放在一个Mutex的lock和unlock范围中,尤其是wait和waitRelative函数的调用,这是强制性的。
来看一个实际的例子,加深一下对Condition类和Mutex类使用的印象。这个例子是Thread类的requestExitAndWait,目的是等待工作线程退出,代码如下所示:
**Thread.cpp**
~~~
status_t Thread::requestExitAndWait()
{
......
requestExit();//设置退出变量mExitPending为true
Mutex::Autolock_l(mLock);//使用Autolock,mLock被锁住
while(mRunning == true) {
/*
条件变量的等待,这里为什么要通过while循环来反复检测mRunning?
因为某些时候即使条件类没有被触发,wait也会返回。关于这个问题,强烈建议读者阅读
前边推荐的《Programming with POSIX Thread》一书。
*/
mThreadExitedCondition.wait(mLock);
}
mExitPending = false;
//退出前,局部变量Mutex::Autolock _l的析构会被调用,unlock也就会被自动调用。
returnmStatus;
}
~~~
那么,什么地方会触发这个条件呢?是在工作线程退出前。其代码如下所示:
**Thread.cpp**
~~~
int Thread::_threadLoop(void* user)
{
Thread* const self =static_cast(user);
sp strong(self->mHoldSelf);
wp weak(strong);
self->mHoldSelf.clear();
do {
......
result= self->threadLoop();//调用子类的threadLoop函数
......
//如果mExitPending为true,则退出
if(result == false || self->mExitPending) {
self->mExitPending = true;
//退出前触发条件变量,唤醒等待者
self->mLock.lock();//lock锁住
//mRunning的修改位于锁的保护中。如果你阅读了前面推荐的书,这里也就不难理解了
self->mRunning = false;
self->mThreadExitedCondition.broadcast();
self->mLock.unlock();//释放锁
break;//退出循环,此后该线程函数会退出
}
......
}while(strong != 0);
return0;
}
~~~
关于Android多线程的同步类,暂时介绍到此吧。当然,这些类背后所隐含的知识及技术是读者需要倍加重视的。
希望我们能养成一种由点及面的学习方法。以我们的同步类为例,假设你是第一次接触多线程编程,也学会了如何使用Mutex和Condition这两个类,不妨以这两个类代码中所传递的知识做为切入点,把和多线程相关的所有知识(这个知识不仅仅是函数的使用,还包括多线程的原理,多线程的编程模型,甚至是现在很热门的并行多核编程)普遍了解一下。只有深刻理解并掌握了原理等基础和框架性的知识,才能以不变应万变,才能做到游刃有余。
3. 原子操作函数介绍
什么是原子操作?所谓原子操作,就是该操作绝不会在执行完毕前被任何其他任务或事件打断,也就说,原子操作是最小的执行单位。
上面这句话放到代码中是什么意思?请看一个例子:
**例子**
~~~
static int g_flag = 0; //全局变量g_flag
static Mutex lock ;//全局的锁
//线程1执行thread1
void thread1()
{
//g_flag递减,每次操作前锁住
lock.lock();
g_flag--;
lock.unlock();
}
//线程2中执行thread2函数
void thread2()
{
lock.lock();
g_flag++; //线程2对g_flag进行递增操作,每次操作前要取得锁
lock.unlock();
}
~~~
为什么需要Mutex来帮忙呢?因为g_flags++或者g_flags—操作都不是原子操作。从汇编指令的角度看,C/C++中的一条语句对应了数条汇编指令。以g_flags++操作为例,它生成的汇编指令可能就是以下三条:
- 从内存中取数据到寄存器。
- 对寄存器中的数据进行递增操作,结果还在寄存器中。
- 寄存器的结果写回内存。
这三条汇编指令,如果按正常的顺序连续执行,是没有问题的,但在多线程时就不能保证了。例如,线程1在执行第一条指令后,线程2由于调度的原因,抢先在线程1之前连续执行完了三条指令。这样,线程1继续执行指令时,它所使用的值就不是线程2更新后的值,而是之前的旧值。再对这个值进行操作便没有意义了。
在一般情况下,处理这种问题可以使用Mutex来加锁保护,但Mutex的使用比它所要保护的内容还复杂,例如,锁的使用将导致从用户态转入内核态,有较大的浪费。那么,有没有简便些的办法让这些加、减等操作不被中断呢?
答案是肯定的,但这需要CPU的支持。在X86平台上,一个递增操作可以用下面的内嵌汇编语句实现:
~~~
#define LOCK "lock;"
INT32 InterlockedIncrement(INT32* lpAddend)
{
/*
这是我们在Linux平台上实现Windows API时使用的方法。
其中在SMP系统上,LOCK定义成”lock;”表示锁总线,这样同一时刻只能有一个CPU访问总线。
非SMP系统,LOCK定义成空。由于InterlockedIncrement要返回递增前的旧值,所以我们
使用了xaddl指令,它先交换源和目的的操作数,再进行递增操作。
*/
INT32i = 1;
__asm____volatile__(
LOCK"xaddl %0, %1"
:"+r"(i), "+m" (*lpAddend)
:: "memory");
return*lpAddend;
}
~~~
Android提供了相关的原子操作函数。这里,有必要介绍一下各个函数的作用。
**Atomic.h**,注意该文件位置在system/core/include/cutils目录中。
~~~
//原子赋值操作,结果是*addr=value
void android_atomic_write(int32_t value,volatile int32_t* addr);
//下面所有函数的返回值都是操作前的旧值
//原子加1和原子减1
int32_t android_atomic_inc(volatile int32_t*addr);
int32_t android_atomic_dec(volatile int32_t*addr);
//原子加法操作,value为被加数
int32_t android_atomic_add(int32_t value,volatile int32_t* addr);
//原子“与”和“或”操作
int32_t android_atomic_and(int32_t value,volatile int32_t* addr);
int32_t android_atomic_or(int32_t value,volatile int32_t* addr);
/*
条件交换的原子操作。只有在oldValue等于*addr时,才会把newValue赋值给*addr
这个函数的返回值须特别注意。返回值非零,表示没有进行赋值操作。返回值为零,表示
进行了原子操作。
*/
int android_atomic_cmpxchg(int32_t oldvalue,int32_t newvalue,volatile int32_t*addr);
~~~
有兴趣的话,读者可以对上述函数的实现进行深入研究,其中,
- X86平台的实现在system/core/libcutils/Atomic.c中,注意其代码在#elif defined(__i386__) || defined(__x86_64__)所包括的代码段内。
- ARM平台的实现在system/core/libcutils/atomic-android-arm.S汇编文件中。
原子操作的最大好处在于避免了锁的使用,这对整个程序运行效率的提高有很大帮助。目前,在多核并行编程中,最高境界就是完全不使用锁。当然,它的难度可想而知是巨大的。
';