(2)快速排序 (Quick Sort)

最后更新于:2022-04-01 21:03:23

[TOC] ## 算法原理 > 快速排序是图灵奖得主[ C. R. A. Hoare](http://zh.wikipedia.org/wiki/%E6%9D%B1%E5%B0%BC%C2%B7%E9%9C%8D%E7%88%BE) 于 1960 年提出的一种划分交换排序。它采用了一种分治的策略,通常称其为[分治法(Divide-and-ConquerMethod)](http://en.wikipedia.org/wiki/Quicksort)。 [![C. R. A. Hoare](http://bubkoo.qiniudn.com/C.R.A.Hoare.jpg)](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2015-07-26_55b453b1daebc.jpg "C. R. A. Hoare") C. R. A. Hoare 分治法的基本思想是:将原问题分解为若干个规模更小但结构与原问题相似的子问题。递归地解这些子问题,然后将这些子问题的解组合为原问题的解。 利用分治法可将快速排序的分为三步: 1. 在数据集之中,选择一个元素作为”基准”(pivot)。 2. 所有小于”基准”的元素,都移到”基准”的左边;所有大于”基准”的元素,都移到”基准”的右边。这个操作称为[分区 (partition) 操作](http://en.wikipedia.org/wiki/Quicksort),分区操作结束后,基准元素所处的位置就是最终排序后它的位置。 3. 对”基准”左边和右边的两个子集,不断重复第一步和第二步,直到所有子集只剩下一个元素为止。 [![图片来自维基百科](http://bubkoo.qiniudn.com/Sorting_quicksort_anim.gif)](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2015-07-26_55b453d030132.gif "图片来自维基百科") 图片来自维基百科分区是快速排序的主要内容,用伪代码可以表示如下: ~~~ function partition(a, left, right, pivotIndex) pivotValue := a[pivotIndex] swap(a[pivotIndex], a[right]) // 把 pivot 移到結尾 storeIndex := left for i from left to right-1 if a[i] < pivotValue swap(a[storeIndex], a[i]) storeIndex := storeIndex + 1 swap(a[right], a[storeIndex]) // 把 pivot 移到它最後的地方 return storeIndex // 返回 pivot 的最终位置 ~~~ 首先,把基准元素移到結尾(如果直接选择最后一个元素为基准元素,那就不用移动),然后从左到右(除了最后的基准元素),循环移动小于等于基准元素的元素到数组的开头,每次移动 storeIndex 自增 1,表示下一个小于基准元素将要移动到的位置。循环结束后 storeIndex 所代表的的位置就是基准元素的所有摆放的位置。所以最后将基准元素所在位置(这里是 right)与 storeIndex 所代表的的位置的元素交换位置。要注意的是,一个元素在到达它的最后位置前,可能会被交换很多次。 一旦我们有了这个分区算法,要写快速排列本身就很容易: ~~~ procedure quicksort(a, left, right) if right > left select a pivot value a[pivotIndex] pivotNewIndex := partition(a, left, right, pivotIndex) quicksort(a, left, pivotNewIndex-1) quicksort(a, pivotNewIndex+1, right) ~~~ ## 实例分析 举例来说,现有数组 arr = [3,7,8,5,2,1,9,5,4],分区可以分解成以下步骤: 1. 首先选定一个基准元素,这里我们元素 5 为基准元素(基准元素可以任意选择): ~~~ pivot ↓ 3 7 8 5 2 1 9 5 4 ~~~ 2. 将基准元素与数组中最后一个元素交换位置,如果选择最后一个元素为基准元素可以省略该步: ~~~ pivot ↓ 3 7 8 4 2 1 9 5 5 ~~~ 3. 从左到右(除了最后的基准元素),循环移动小于基准元素 5 的所有元素到数组开头,留下大于等于基准元素的元素接在后面。在这个过程它也为基准元素找寻最后摆放的位置。循环流程如下: 循环 i == 0 时,storeIndex == 0,找到一个小于基准元素的元素 3,那么将其与 storeIndex 所在位置的元素交换位置,这里是 3 自身,交换后将 storeIndex 自增 1,storeIndex == 1: ~~~ pivot ↓ 3 7 8 4 2 1 9 5 5 ↑ storeIndex ~~~ 循环 i == 3 时,storeIndex == 1,找到一个小于基准元素的元素 4: ~~~ ┌───────┐ pivot ↓ ↓ ↓ 3 7 8 4 2 1 9 5 5 ↑ ↑ storeIndex i ~~~ 交换位置后,storeIndex 自增 1,storeIndex == 2: ~~~ pivot ↓ 3 4 8 7 2 1 9 5 5 ↑ storeIndex ~~~ 循环 i == 4 时,storeIndex == 2,找到一个小于基准元素的元素 2: ~~~ ┌───────┐ pivot ↓ ↓ ↓ 3 4 8 7 2 1 9 5 5 ↑ ↑ storeIndex i ~~~ 交换位置后,storeIndex 自增 1,storeIndex == 3: ~~~ pivot ↓ 3 4 2 7 8 1 9 5 5 ↑ storeIndex ~~~ 循环 i == 5 时,storeIndex == 3,找到一个小于基准元素的元素 1: ~~~ ┌───────┐ pivot ↓ ↓ ↓ 3 4 2 7 8 1 9 5 5 ↑ ↑ storeIndex i ~~~ 交换后位置后,storeIndex 自增 1,storeIndex == 4: ~~~ pivot ↓ 3 4 2 1 8 7 9 5 5 ↑ storeIndex ~~~ 循环 i == 7 时,storeIndex == 4,找到一个小于等于基准元素的元素 5: ~~~ ┌───────────┐ pivot ↓ ↓ ↓ 3 4 2 1 8 7 9 5 5 ↑ ↑ storeIndex i ~~~ 交换后位置后,storeIndex 自增 1,storeIndex == 5: ~~~ pivot ↓ 3 4 2 1 5 7 9 8 5 ↑ storeIndex ~~~ 4. 循环结束后交换基准元素和 storeIndex 位置的元素的位置: ~~~ pivot ↓ 3 4 2 1 5 5 9 8 7 ↑ storeIndex ~~~ 那么 storeIndex 的值就是基准元素的最终位置,这样整个分区过程就完成了。 引用[维基百科](http://en.wikipedia.org/wiki/Quicksort)上的一张图片: [![图片来自维基百科](http://bubkoo.qiniudn.com/Partition_example.svg.png)](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2015-07-26_55b453d0afa49.png "图片来自维基百科") 图片来自维基百科 ## JavaScript 语言实现 查看了很多关于 JavaScript 实现快速排序方法的文章后,发现绝大多数实现方法如下: ~~~ function quickSort(arr) {   if (arr.length <= 1) { return arr; }   var pivotIndex = Math.floor(arr.length / 2);   var pivot = arr.splice(pivotIndex, 1)[0];   var left = [];   var right = [];   for (var i = 0; i < arr.length; i++) {     if (arr[i] < pivot) {       left.push(arr[i]);     } else {       right.push(arr[i]);     }   }   return quickSort(left).concat([pivot], quickSort(right)); } ~~~ > 上面简单版本的缺点是,它需要Ω(n)的额外存储空间,也就跟归并排序一样不好。额外需要的存储器空间配置,在实际上的实现,也会极度影响速度和高速缓存的性能。 > > 摘自[维基百科](http://en.wikipedia.org/wiki/Quicksort) 按照[维基百科](http://en.wikipedia.org/wiki/Quicksort)中的原地(in-place)分区版本,实现快速排序方法如下: ~~~ function quickSort(array) { // 交换元素位置 function swap(array, i, k) { var temp = array[i]; array[i] = array[k]; array[k] = temp; } // 数组分区,左小右大 function partition(array, left, right) { var storeIndex = left; var pivot = array[right]; // 直接选最右边的元素为基准元素 for (var i = left; i < right; i++) { if (array[i] < pivot) { swap(array, storeIndex, i); storeIndex++; // 交换位置后,storeIndex 自增 1,代表下一个可能要交换的位置 } } swap(array, right, storeIndex); // 将基准元素放置到最后的正确位置上 return storeIndex; } function sort(array, left, right) { if (left > right) { return; } var storeIndex = partition(array, left, right); sort(array, left, storeIndex - 1); sort(array, storeIndex + 1, right); } sort(array, 0, array.length - 1); return array; } ~~~ 另外一个版本,思路和上面的一样,代码逻辑没有上面的清晰 ~~~ function quickSort(arr) { return sort(arr, 0, arr.length - 1); function swap(arr, i, k) { var temp = arr[i]; arr[i] = arr[k]; arr[k] = temp; } function sort(arr, start, end) { sort(arr, 0, arr.length - 1); return arr; function swap(arr, i, k) { var temp = arr[i]; arr[i] = arr[k]; arr[k] = temp; } function sort(arr, start, end) { if (start >= end) return; var pivot = arr[start], i = start + 1, k = end; while (true) { while (arr[i] < pivot) { i++; } while (arr[k] > pivot) { k--; } if (i >= k) { break; } swap(arr, i, k); } swap(arr, start, k); sort(arr, start, Math.max(0, k - 1)); sort(arr, Math.min(end, k + 1), end); } } } ~~~ ## 参考文章 * [wiki Quicksort](http://en.wikipedia.org/wiki/Quicksort) * [维基百科 - 快速排序](http://zh.wikipedia.org/wiki/%E5%BF%AB%E9%80%9F%E6%8E%92%E5%BA%8F) * [快速排序(Quicksort)的Javascript实现](http://www.ruanyifeng.com/blog/2011/04/quicksort_in_javascript.html) * [Quicksort in JavaScript](http://www.cnblogs.com/ethanzheng/archive/2013/02/20/quicksort-in-javascript.html) * [经典排序算法 - 快速排序Quick sort](http://www.cnblogs.com/kkun/archive/2011/11/23/2260270.html) * [快速排序(QuickSort)](http://student.zjzk.cn/course_ware/data_structure/web/paixu/paixu8.3.2.1.htm) * [ソートアルゴリズムを映像化してみた](http://jsdo.it/norahiko/oxIy/fullscreen) * [Stable quicksort in Javascript](http://acatalept.com/blog/2008/10/28/stable-quicksort-in-javascript/) * [Friday Algorithms: Quicksort – Difference Between PHP and JavaScript](http://www.stoimen.com/blog/2010/06/11/friday-algorithms-quicksort-difference-between-php-and-javascript/)
';