1.3.3 FPM的初始化
最后更新于:2022-04-02 05:16:19
### 1.3.3 FPM的初始化
接下来看下fpm的启动流程,从`main()`函数开始:
```c
//sapi/fpm/fpm/fpm_main.c
int main(int argc, char *argv[])
{
...
//注册SAPI:将全局变量sapi_module设置为cgi_sapi_module
sapi_startup(&cgi_sapi_module);
...
//执行php_module_starup()
if (cgi_sapi_module.startup(&cgi_sapi_module) == FAILURE) {
return FPM_EXIT_SOFTWARE;
}
...
//初始化
if(0 > fpm_init(...)){
...
}
...
fpm_is_running = 1;
fcgi_fd = fpm_run(&max_requests);//后面都是worker进程的操作,master进程不会走到下面
parent = 0;
...
}
```
`fpm_init()`主要有以下几个关键操作:
__(1)fpm_conf_init_main():__
解析php-fpm.conf配置文件,分配worker pool内存结构并保存到全局变量中:fpm_worker_all_pools,各worker pool配置解析到`fpm_worker_pool_s->config`中。
__(2)fpm_scoreboard_init_main():__ 分配用于记录worker进程运行信息的共享内存,按照worker pool的最大worker进程数分配,每个worker pool分配一个`fpm_scoreboard_s`结构,pool下对应的每个worker进程分配一个`fpm_scoreboard_proc_s`结构,各结构的对应关系如下图。
![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2149debf6bd2561595c28d3883cc4296_529x484.png)
__(3)fpm_signals_init_main():__
```c
static int sp[2];
int fpm_signals_init_main()
{
struct sigaction act;
//创建一个全双工管道
if (0 > socketpair(AF_UNIX, SOCK_STREAM, 0, sp)) {
return -1;
}
//注册信号处理handler
act.sa_handler = sig_handler;
sigfillset(&act.sa_mask);
if (0 > sigaction(SIGTERM, &act, 0) ||
0 > sigaction(SIGINT, &act, 0) ||
0 > sigaction(SIGUSR1, &act, 0) ||
0 > sigaction(SIGUSR2, &act, 0) ||
0 > sigaction(SIGCHLD, &act, 0) ||
0 > sigaction(SIGQUIT, &act, 0)) {
return -1;
}
return 0;
}
```
这里会通过`socketpair()`创建一个管道,这个管道并不是用于master与worker进程通信的,它只在master进程中使用,具体用途在稍后介绍event事件处理时再作说明。另外设置master的信号处理handler,当master收到SIGTERM、SIGINT、SIGUSR1、SIGUSR2、SIGCHLD、SIGQUIT这些信号时将调用`sig_handler()`处理:
```c
static void sig_handler(int signo)
{
static const char sig_chars[NSIG + 1] = {
[SIGTERM] = 'T',
[SIGINT] = 'I',
[SIGUSR1] = '1',
[SIGUSR2] = '2',
[SIGQUIT] = 'Q',
[SIGCHLD] = 'C'
};
char s;
...
s = sig_chars[signo];
//将信号通知写入管道sp[1]端
write(sp[1], &s, sizeof(s));
...
}
```
__(4)fpm_sockets_init_main()__
创建每个worker pool的socket套接字。
__(5)fpm_event_init_main():__
启动master的事件管理,fpm实现了一个事件管理器用于管理IO、定时事件,其中IO事件通过kqueue、epoll、poll、select等管理,定时事件就是定时器,一定时间后触发某个事件。
在`fpm_init()`初始化完成后接下来就是最关键的`fpm_run()`操作了,此环节将fork子进程,启动进程管理器,另外master进程将不会再返回,只有各worker进程会返回,也就是说`fpm_run()`之后的操作均是worker进程的。
```c
int fpm_run(int *max_requests)
{
struct fpm_worker_pool_s *wp;
for (wp = fpm_worker_all_pools; wp; wp = wp->next) {
//调用fpm_children_make() fork子进程
is_parent = fpm_children_create_initial(wp);
if (!is_parent) {
goto run_child;
}
}
//master进程将进入event循环,不再往下走
fpm_event_loop(0);
run_child: //只有worker进程会到这里
*max_requests = fpm_globals.max_requests;
return fpm_globals.listening_socket; //返回监听的套接字
}
```
在fork后worker进程返回了监听的套接字继续main()后面的处理,而master将永远阻塞在`fpm_event_loop()`,接下来分别介绍master、worker进程的后续操作。
';