生成器
最后更新于:2022-04-01 01:13:13
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的`[]`改成`()`,就创建了一个generator:
~~~
>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>
~~~
创建`L`和`g`的区别仅在于最外层的`[]`和`()`,`L`是一个list,而`g`是一个generator。
我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?
如果要一个一个打印出来,可以通过`next()`函数获得generator的下一个返回值:
~~~
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
~~~
我们讲过,generator保存的是算法,每次调用`next(g)`,就计算出`g`的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出`StopIteration`的错误。
当然,上面这种不断调用`next(g)`实在是太变态了,正确的方法是使用`for`循环,因为generator也是可迭代对象:
~~~
>>> g = (x * x for x in range(10))
>>> for n in g:
... print(n)
...
0
1
4
9
16
25
36
49
64
81
~~~
所以,我们创建了一个generator后,基本上永远不会调用`next()`,而是通过`for`循环来迭代它,并且不需要关心`StopIteration`的错误。
generator非常强大。如果推算的算法比较复杂,用类似列表生成式的`for`循环无法实现的时候,还可以用函数来实现。
比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:
~~~
def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b
n = n + 1
return 'done'
~~~
上面的函数可以输出斐波那契数列的前N个数:
~~~
>>> fib(6)
1
1
2
3
5
8
'done'
~~~
仔细观察,可以看出,`fib`函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。
也就是说,上面的函数和generator仅一步之遥。要把`fib`函数变成generator,只需要把`print(b)`改为`yield b`就可以了:
~~~
def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return 'done'
~~~
这就是定义generator的另一种方法。如果一个函数定义中包含`yield`关键字,那么这个函数就不再是一个普通函数,而是一个generator:
~~~
>>> f = fib(6)
>>> f
<generator object fib at 0x104feaaa0>
~~~
这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到`return`语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用`next()`的时候执行,遇到`yield`语句返回,再次执行时从上次返回的`yield`语句处继续执行。
举个简单的例子,定义一个generator,依次返回数字1,3,5:
~~~
def odd():
print('step 1')
yield 1
print('step 2')
yield(3)
print('step 3')
yield(5)
~~~
调用该generator时,首先要生成一个generator对象,然后用`next()`函数不断获得下一个返回值:
~~~
>>> o = odd()
>>> next(o)
step 1
1
>>> next(o)
step 2
3
>>> next(o)
step 3
5
>>> next(o)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
~~~
可以看到,`odd`不是普通函数,而是generator,在执行过程中,遇到`yield`就中断,下次又继续执行。执行3次`yield`后,已经没有`yield`可以执行了,所以,第4次调用`next(o)`就报错。
回到`fib`的例子,我们在循环过程中不断调用`yield`,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。
同样的,把函数改成generator后,我们基本上从来不会用`next()`来获取下一个返回值,而是直接使用`for`循环来迭代:
~~~
>>> for n in fib(6):
... print(n)
...
1
1
2
3
5
8
~~~
但是用`for`循环调用generator时,发现拿不到generator的`return`语句的返回值。如果想要拿到返回值,必须捕获`StopIteration`错误,返回值包含在`StopIteration`的`value`中:
~~~
>>> g = fib(6)
>>> while True:
... try:
... x = next(g)
... print('g:', x)
... except StopIteration as e:
... print('Generator return value:', e.value)
... break
...
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
Generator return value: done
~~~
关于如何捕获错误,后面的错误处理还会详细讲解。
### 练习
[杨辉三角](http://baike.baidu.com/view/7804.htm)定义如下:
~~~
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
~~~
### 小结
generator是非常强大的工具,在Python中,可以简单地把列表生成式改成generator,也可以通过函数实现复杂逻辑的generator。
要理解generator的工作原理,它是在`for`循环的过程中不断计算出下一个元素,并在适当的条件结束`for`循环。对于函数改成的generator来说,遇到`return`语句或者执行到函数体最后一行语句,就是结束generator的指令,`for`循环随之结束。
请注意区分普通函数和generator函数,普通函数调用直接返回结果:
~~~
>>> r = abs(6)
>>> r
6
~~~
generator函数的“调用”实际返回一个generator对象:
~~~
>>> g = fib(6)
>>> g
<generator object fib at 0x1022ef948>
~~~
### 参考源码
[do_generator.py](https://github.com/michaelliao/learn-python3/blob/master/samples/advance/do_generator.py)