练习40:二叉搜索树

最后更新于:2022-04-01 23:29:28

# 练习40:二叉搜索树 > 原文:[Exercise 40: Binary Search Trees](http://c.learncodethehardway.org/book/ex40.html) > 译者:[飞龙](https://github.com/wizardforcel) 二叉树是最简单的树形数据结构,虽然它在许多语言中被哈希表取代,但仍旧对于一些应用很实用。二叉树的各种变体可用于一些非常实用东西,比如数据库的索引、搜索算法结构、以及图像处理。 我把我的二叉树叫做`BSTree`,描述它的最佳方法就是它是另一种`Hashmap`形式的键值对储存容器。它们的差异在于,哈希表为键计算哈希值来寻找位置,而二叉树将键与树中的节点进行对比,之后深入树中找到储存它的最佳位置,基于它与其它节点的关系。 在我真正解释它的工作原理之前,让我向你展示`bstree.h`头文件,便于你看到数据结构,之后我会用它来解释如何构建。 ```c #ifndef _lcthw_BSTree_h #define _lcthw_BSTree_h typedef int (*BSTree_compare)(void *a, void *b); typedef struct BSTreeNode { void *key; void *data; struct BSTreeNode *left; struct BSTreeNode *right; struct BSTreeNode *parent; } BSTreeNode; typedef struct BSTree { int count; BSTree_compare compare; BSTreeNode *root; } BSTree; typedef int (*BSTree_traverse_cb)(BSTreeNode *node); BSTree *BSTree_create(BSTree_compare compare); void BSTree_destroy(BSTree *map); int BSTree_set(BSTree *map, void *key, void *data); void *BSTree_get(BSTree *map, void *key); int BSTree_traverse(BSTree *map, BSTree_traverse_cb traverse_cb); void *BSTree_delete(BSTree *map, void *key); #endif ``` 这遵循了我之前用过的相同模式,我创建了一个基容器叫做`BSTree`,它含有叫做`BSTreeNode`的节点,组成实际内容。厌倦了吗?是的,这种结构也没有什么高明之处。 最重要的部分是,`BSTreeNode`如何配置,以及它如何用于进行每个操作:设置、获取和删除。我会首先讲解`get`,因为它是最简单的操作,并且我会在数据结构上手动操作: + 我获得你要找的键,并且用根节点开始遍历,首先我将你的键与这个节点的键进行对比。 + 如果你的键小于`node.key`,我使用`left`指针来详细遍历。 + 如果你的键大于`node.key`,我使用`right`指针来详细遍历。 + 重复第二步和第三部,知道我找到了匹配`node.key`的节点,或者我遍历到了没有左子树或右子树的节点。这种情况我会返回`node.data`,其它情况会返回`NULL`。 这就是`get`的全部操作,现在是`set`,它几乎执行相同的操作,除了你在寻找防止新节点的位置。 + 如果`BSTree.root`为空,就算是执行完成了。它就是第一个节点。 + 之后我会将你的键与`node.key`进行比对,从根节点开始。 + 如果你的键小于或等于`node.key`,我会遍历左子树,否则是右子树。 + 重复第三步,直到我到达了没有左子树或右子树的节点,但是这是我需要选择的方向。 + 我选择了这个方向(左或者右)来放置新的节点,并且将这个新节点的父节点设为我来时的上一个节点。当我删除它时,我会使用它的父节点。 这也解释了它如何工作。如果寻找一个节点涉及到按照键的对比来遍历左子树或右子树,那么设置一个节点涉及到相同的事情,直到我找到了一个位置,可以在其左子树或右子树上放置新的节点。 花一些时间在纸上画出一些树并且遍历一些节点来进行查找或设置,你就可以理解它如何工作。之后你要准备好来看一看实现,我在其中解释了删除操作。删除一个节点非常麻烦,因此它最适合逐行的代码分解。 ```c #include #include #include #include static int default_compare(void *a, void *b) { return bstrcmp((bstring)a, (bstring)b); } BSTree *BSTree_create(BSTree_compare compare) { BSTree *map = calloc(1, sizeof(BSTree)); check_mem(map); map->compare = compare == NULL ? default_compare : compare; return map; error: if(map) { BSTree_destroy(map); } return NULL; } static int BSTree_destroy_cb(BSTreeNode *node) { free(node); return 0; } void BSTree_destroy(BSTree *map) { if(map) { BSTree_traverse(map, BSTree_destroy_cb); free(map); } } static inline BSTreeNode *BSTreeNode_create(BSTreeNode *parent, void *key, void *data) { BSTreeNode *node = calloc(1, sizeof(BSTreeNode)); check_mem(node); node->key = key; node->data = data; node->parent = parent; return node; error: return NULL; } static inline void BSTree_setnode(BSTree *map, BSTreeNode *node, void *key, void *data) { int cmp = map->compare(node->key, key); if(cmp <= 0) { if(node->left) { BSTree_setnode(map, node->left, key, data); } else { node->left = BSTreeNode_create(node, key, data); } } else { if(node->right) { BSTree_setnode(map, node->right, key, data); } else { node->right = BSTreeNode_create(node, key, data); } } } int BSTree_set(BSTree *map, void *key, void *data) { if(map->root == NULL) { // first so just make it and get out map->root = BSTreeNode_create(NULL, key, data); check_mem(map->root); } else { BSTree_setnode(map, map->root, key, data); } return 0; error: return -1; } static inline BSTreeNode *BSTree_getnode(BSTree *map, BSTreeNode *node, void *key) { int cmp = map->compare(node->key, key); if(cmp == 0) { return node; } else if(cmp < 0) { if(node->left) { return BSTree_getnode(map, node->left, key); } else { return NULL; } } else { if(node->right) { return BSTree_getnode(map, node->right, key); } else { return NULL; } } } void *BSTree_get(BSTree *map, void *key) { if(map->root == NULL) { return NULL; } else { BSTreeNode *node = BSTree_getnode(map, map->root, key); return node == NULL ? NULL : node->data; } } static inline int BSTree_traverse_nodes(BSTreeNode *node, BSTree_traverse_cb traverse_cb) { int rc = 0; if(node->left) { rc = BSTree_traverse_nodes(node->left, traverse_cb); if(rc != 0) return rc; } if(node->right) { rc = BSTree_traverse_nodes(node->right, traverse_cb); if(rc != 0) return rc; } return traverse_cb(node); } int BSTree_traverse(BSTree *map, BSTree_traverse_cb traverse_cb) { if(map->root) { return BSTree_traverse_nodes(map->root, traverse_cb); } return 0; } static inline BSTreeNode *BSTree_find_min(BSTreeNode *node) { while(node->left) { node = node->left; } return node; } static inline void BSTree_replace_node_in_parent(BSTree *map, BSTreeNode *node, BSTreeNode *new_value) { if(node->parent) { if(node == node->parent->left) { node->parent->left = new_value; } else { node->parent->right = new_value; } } else { // this is the root so gotta change it map->root = new_value; } if(new_value) { new_value->parent = node->parent; } } static inline void BSTree_swap(BSTreeNode *a, BSTreeNode *b) { void *temp = NULL; temp = b->key; b->key = a->key; a->key = temp; temp = b->data; b->data = a->data; a->data = temp; } static inline BSTreeNode *BSTree_node_delete(BSTree *map, BSTreeNode *node, void *key) { int cmp = map->compare(node->key, key); if(cmp < 0) { if(node->left) { return BSTree_node_delete(map, node->left, key); } else { // not found return NULL; } } else if(cmp > 0) { if(node->right) { return BSTree_node_delete(map, node->right, key); } else { // not found return NULL; } } else { if(node->left && node->right) { // swap this node for the smallest node that is bigger than us BSTreeNode *successor = BSTree_find_min(node->right); BSTree_swap(successor, node); // this leaves the old successor with possibly a right child // so replace it with that right child BSTree_replace_node_in_parent(map, successor, successor->right); // finally it's swapped, so return successor instead of node return successor; } else if(node->left) { BSTree_replace_node_in_parent(map, node, node->left); } else if(node->right) { BSTree_replace_node_in_parent(map, node, node->right); } else { BSTree_replace_node_in_parent(map, node, NULL); } return node; } } void *BSTree_delete(BSTree *map, void *key) { void *data = NULL; if(map->root) { BSTreeNode *node = BSTree_node_delete(map, map->root, key); if(node) { data = node->data; free(node); } } return data; } ``` 在讲解`BSTree_delete`如何工作之前,我打算解释一下我用于执行递归函数的模式。你会发现许多树形数据结构都易于使用递归来编写,而写成单个函数的形式相当困难。一部分原因在于你需要为第一次操作建立一些初始的数据,之后在数据结构中递归,这难以写成一个函数。 解决办法就是使用两个函数。一个函数“建立”数据结构和首次递归的条件使第二层函数能够执行真正的逻辑。首先看一看`BSTree_get`来理解我所说的。 + 我设置了初始条件来处理递归,如果`map->NULL`是`NULL`,那么就返回`NULL`并且不需要递归。 + 之后我执行了真正的递归调用,它就是`BSTree_getnode`。我设置了根节点的初始条件、`key`和`map`。 + 之后在`BSTree_getnode`中,我执行了真正的递归逻辑,我将是用`map->compare(node->key, key)`来进行键的比对,并且根据结果遍历左子树或右子树,或者相等。 + 由于这个函数时“自相似”的,并且不用处理任何初始条件(因为`BSTree_get`处理了),我就可以使它非常简单。当它完成时会返回给调用者,最后把结构返回给`BSTree_get`。 + 最后,在结果不为`NULL`的情况下,`BSTree_get`处理获得的`node.data`元素。 这种构造递归算法的方法,与我构造递归数据结构的方法一致。我创建了一个起始的“基函数”,它处理初始条件和一些边界情况,之后它调用了一个简洁的递归函数来执行任务。与之相比,我在`BStree`中创建了“基结构”,它持有递归的`BSTreeNode`结构,每个节点都引用树中的其它节点。使用这种模式让我更容易处理递归并保持简洁。 接下来,浏览`BSTree_set` 和 `BSTree_setnode`,来观察相同的模式。我使用`BSTree_set`来确保初始条件和便捷情况。常见的边界情况就是树中没有根节点,于是我需要创建一个函数来初始化它们。 这个模式适用于几乎任何递归的算法。我按照这种模式来编写它们: + 理解初始变量,它们如何改变,以及递归每一步的终止条件。 + 编写调用自身的递归函数,带有参数作为终止条件和初始变量。 + 编程一个启动函数来设置算法的初始条件,并且处理边界情况,之后调用递归函数。 + 最后,启动函数返回最后的结果,并且如果递归函数不能处理最终的边界情况可能还要做调整。 这引导了我完成`BSTree_delete`和`BSTree_node_delete`。首先你可以看一下`BSTree_delete`和它的启动函数,它获取结果节点的数据,并且释放找到的节点。在`BSTree_node_delete`中事情就变得复杂了,因为要在树中任意位置删除一个节点,我需要将子节点翻转上来。我会逐行拆分这个函数: bstree.c:190 我执行比较函数来找出应该选择的方向。 bstree.c:192-198 这是“小于”的分支,我应该移到左子树。这里左子树并不存在并且返回了`NULL`来表示“未找到”。这处理了一些不在`BSTree`中元素的删除操作。 bstree.c:199-205 和上面相同,但是是对于树的右侧分支。这就像其它函数一样只是在树中向下遍历,并且在不存在时返回`NULL`。 bstree.c:206 这里是发现目标节点的地方,因为键是相等的(`compare`返回了0)。 bstree.c:207 这个节点同时具有`left`和`right`分支,所以它深深嵌入在树中。 bstree.c:209 要移除这个节点,我首先要找到大于这个节点的最小节点,这里我在右子树上调用了`BSTree_find_min`。 bstree.c:210 一旦我获得了这个几点,我将它的`key`和`data`与当前节点互换。这样就高效地将当前节点移动到树的最底端,并且不同通过它的指针来调整节点。 bstree.c:214 现在`successor`是一个无效的分支,储存了当前节点的值。然而它可能还带有右子树,也就是说我必须做一个旋转使它的右节点上来代替它。 bstree.c:217 到此为止,`successor`已经从树中移出了,它的值被当前节点的值代替,它的任何子树都合并进了它的父节点。我可以像`node`一样返回它。 bstree.c:218 这个分支中,我了解到这个节点没有右子树只有左子树,所以我可以简单地用左节点来替代它。 bstree.c:219 我再次使用`BSTree_replace_node_in_parent`来执行替换,把左节点旋转上去。 bstree.c:220 这是只有右子树而没有左子树的情况,所以需要将右节点旋转上去。 bstree.c:221 再次使用相同的函数,这次是针对右节点。 bstree.c:222 最后,对于我发现的节点只剩下一种情况,就是它没有任何子树(没有做子树也没有右子树)。这种情况,我只需要使用相同函数以`NULL`来执行替换。 bstree.c:210 在此之后,我已经将当前节点从书中移除,并且以某个合适的子节点的元素来替换。我只需要把它返回给调用者,使它能够被释放或管理。 这个操作非常复杂,实话说,在一些树形数据结构中,我并不需要执行删除,而是把它当做软件中的常亮数据。如果我需要做繁杂的插入和删除工作,我会使用`Hashmap`。 最后,你可以查看它的单元测试以及测试方法: ```c #include "minunit.h" #include #include #include #include #include BSTree *map = NULL; static int traverse_called = 0; struct tagbstring test1 = bsStatic("test data 1"); struct tagbstring test2 = bsStatic("test data 2"); struct tagbstring test3 = bsStatic("xest data 3"); struct tagbstring expect1 = bsStatic("THE VALUE 1"); struct tagbstring expect2 = bsStatic("THE VALUE 2"); struct tagbstring expect3 = bsStatic("THE VALUE 3"); static int traverse_good_cb(BSTreeNode *node) { debug("KEY: %s", bdata((bstring)node->key)); traverse_called++; return 0; } static int traverse_fail_cb(BSTreeNode *node) { debug("KEY: %s", bdata((bstring)node->key)); traverse_called++; if(traverse_called == 2) { return 1; } else { return 0; } } char *test_create() { map = BSTree_create(NULL); mu_assert(map != NULL, "Failed to create map."); return NULL; } char *test_destroy() { BSTree_destroy(map); return NULL; } char *test_get_set() { int rc = BSTree_set(map, &test1, &expect1); mu_assert(rc == 0, "Failed to set &test1"); bstring result = BSTree_get(map, &test1); mu_assert(result == &expect1, "Wrong value for test1."); rc = BSTree_set(map, &test2, &expect2); mu_assert(rc == 0, "Failed to set test2"); result = BSTree_get(map, &test2); mu_assert(result == &expect2, "Wrong value for test2."); rc = BSTree_set(map, &test3, &expect3); mu_assert(rc == 0, "Failed to set test3"); result = BSTree_get(map, &test3); mu_assert(result == &expect3, "Wrong value for test3."); return NULL; } char *test_traverse() { int rc = BSTree_traverse(map, traverse_good_cb); mu_assert(rc == 0, "Failed to traverse."); mu_assert(traverse_called == 3, "Wrong count traverse."); traverse_called = 0; rc = BSTree_traverse(map, traverse_fail_cb); mu_assert(rc == 1, "Failed to traverse."); mu_assert(traverse_called == 2, "Wrong count traverse for fail."); return NULL; } char *test_delete() { bstring deleted = (bstring)BSTree_delete(map, &test1); mu_assert(deleted != NULL, "Got NULL on delete."); mu_assert(deleted == &expect1, "Should get test1"); bstring result = BSTree_get(map, &test1); mu_assert(result == NULL, "Should delete."); deleted = (bstring)BSTree_delete(map, &test1); mu_assert(deleted == NULL, "Should get NULL on delete"); deleted = (bstring)BSTree_delete(map, &test2); mu_assert(deleted != NULL, "Got NULL on delete."); mu_assert(deleted == &expect2, "Should get test2"); result = BSTree_get(map, &test2); mu_assert(result == NULL, "Should delete."); deleted = (bstring)BSTree_delete(map, &test3); mu_assert(deleted != NULL, "Got NULL on delete."); mu_assert(deleted == &expect3, "Should get test3"); result = BSTree_get(map, &test3); mu_assert(result == NULL, "Should delete."); // test deleting non-existent stuff deleted = (bstring)BSTree_delete(map, &test3); mu_assert(deleted == NULL, "Should get NULL"); return NULL; } char *test_fuzzing() { BSTree *store = BSTree_create(NULL); int i = 0; int j = 0; bstring numbers[100] = {NULL}; bstring data[100] = {NULL}; srand((unsigned int)time(NULL)); for(i = 0; i < 100; i++) { int num = rand(); numbers[i] = bformat("%d", num); data[i] = bformat("data %d", num); BSTree_set(store, numbers[i], data[i]); } for(i = 0; i < 100; i++) { bstring value = BSTree_delete(store, numbers[i]); mu_assert(value == data[i], "Failed to delete the right number."); mu_assert(BSTree_delete(store, numbers[i]) == NULL, "Should get nothing."); for(j = i+1; j < 99 - i; j++) { bstring value = BSTree_get(store, numbers[j]); mu_assert(value == data[j], "Failed to get the right number."); } bdestroy(value); bdestroy(numbers[i]); } BSTree_destroy(store); return NULL; } char *all_tests() { mu_suite_start(); mu_run_test(test_create); mu_run_test(test_get_set); mu_run_test(test_traverse); mu_run_test(test_delete); mu_run_test(test_destroy); mu_run_test(test_fuzzing); return NULL; } RUN_TESTS(all_tests); ``` 我要重点讲解`test_fuzzing`函数,它是针对复杂数据结构的一种有趣的测试技巧。创建一些键来覆盖`BSTree_node_delete`的所有分支相当困难,而且有可能我会错过一些边界情况。更好的方法就是创建一个“模糊测试”的函数来执行所有操作,并尽可能以一种可怕且随机的方式执行它们。这里我插入了一系列随机字符串的键,之后我删除了它们并试着在删除之后获取它们的值。 这种测试可以避免只测试到你知道能正常工作的部分,这意味着你不会遗漏不知道的事情。通过想你的数据结构插入一些随机的垃圾数据,你可以碰到意料之外的事情,并检测出任何bug。 ## 如何改进 不要完成下列任何习题,因为在下个练习中我会使用这里的单元测试,来教你使用一些性能调优的技巧。在你完成练习41之后,你需要返回来完成这些习题。 + 像之前一样,你应该执行所有防御性编程检查,并且为不应发生的情况添加`assert`。例如,你不应该在递归函数中获取到`NULL`,为此添加断言。 + 遍历函数按照左子树、右子树和当前节点的顺组进行遍历。你可以创建相反顺序的遍历函数。 + 每个节点上都会执行完整的字符串比较,但是我可以使用`Hashmap`的哈希函数来提升速度。我可以计算键的哈希值,在`BSTreeNode`中储存它。之后在每个创建的函数中,我可以实现计算出键的哈希值,然后在递归中向下传递。我可以使用哈希来很快地比较每个节点,就像`Hashmap`那样。 ## 附加题 同样,现在先不要完成它们,直到完成练习41,那时你就可以使用`Valgrind`的性能调优技巧来完成它们了。 + 有一种不使用递归的替代的方法,也可以操作这个数据结构。维基百科上介绍了不使用递归来完成相同事情的替代方法。这样做会更好还是更糟? + 查询你能找到的所有不同的树的相关资料。比如AVL树、红黑树、以及一些非树形结构例如跳转表。
';