Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析

最后更新于:2022-04-02 05:01:41

原文出处——>[Android系统进程间通信(IPC)机制Binder中的Server启动过程源代码分析](http://blog.csdn.net/luoshengyang/article/details/6629298) 在前面一篇文章浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路中,介绍了在Android系统中Binder进程间通信机制中的Server角色是如何获得Service Manager远程接口的,即defaultServiceManager函数的实现。Server获得了Service Manager远程接口之后,就要把自己的Service添加到Service Manager中去,然后把自己启动起来,等待Client的请求。本文将通过分析源代码了解Server的启动过程是怎么样的。 本文通过一个具体的例子来说明Binder机制中Server的启动过程。我们知道,在Android系统中,提供了多媒体播放的功能,这个功能是以服务的形式来提供的。这里,我们就通过分析MediaPlayerService的实现来了解Media Server的启动过程。 首先,看一下MediaPlayerService的类图,以便我们理解下面要描述的内容。 ![](http://hi.csdn.net/attachment/201107/24/0_1311479168os88.gif) 我们将要介绍的主角MediaPlayerService继承于BnMediaPlayerService类,熟悉Binder机制的同学应该知道BnMediaPlayerService是一个Binder Native类,用来处理Client请求的。BnMediaPlayerService继承于`BnInterface`类,BnInterface是一个模板类,它定义在**frameworks/base/include/binder/IInterface.h**文件中: ~~~ template class BnInterface : public INTERFACE, public BBinder { public: virtual sp queryLocalInterface(const String16& _descriptor); virtual const String16& getInterfaceDescriptor() const; protected: virtual IBinder* onAsBinder(); }; ~~~ 这里可以看出,BnMediaPlayerService实际是继承了IMediaPlayerService和BBinder类。IMediaPlayerService和BBinder类又分别继承了IInterface和IBinder类,IInterface和IBinder类又同时继承了RefBase类。 实际上,BnMediaPlayerService并不是直接接收到Client处发送过来的请求,而是使用了IPCThreadState接收Client处发送过来的请求,而IPCThreadState又借助了ProcessState类来与Binder驱动程序交互。有关IPCThreadState和ProcessState的关系,可以参考上一篇文章浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路,接下来也会有相应的描述。IPCThreadState接收到了Client处的请求后,就会调用BBinder类的transact函数,并传入相关参数,BBinder类的transact函数最终调用BnMediaPlayerService类的onTransact函数,于是,就开始真正地处理Client的请求了。 了解了MediaPlayerService类结构之后,就要开始进入到本文的主题了。 首先,看看MediaPlayerService是如何启动的。启动MediaPlayerService的代码位于**frameworks/base/media/mediaserver/main_mediaserver.cpp**文件中: ~~~ int main(int argc, char** argv) { sp proc(ProcessState::self()); sp sm = defaultServiceManager(); LOGI("ServiceManager: %p", sm.get()); AudioFlinger::instantiate(); MediaPlayerService::instantiate(); CameraService::instantiate(); AudioPolicyService::instantiate(); ProcessState::self()->startThreadPool(); IPCThreadState::self()->joinThreadPool(); } ~~~ 这里我们不关注AudioFlinger和CameraService相关的代码。 先看下面这句代码: ~~~ sp proc(ProcessState::self()); ~~~ 这句代码的作用是通过ProcessState::self()调用创建一个ProcessState实例。ProcessState::self()是ProcessState类的一个静态成员变量,定义在**frameworks/base/libs/binder/ProcessState.cpp**文件中: ~~~ sp ProcessState::self() { if (gProcess != NULL) return gProcess; AutoMutex _l(gProcessMutex); if (gProcess == NULL) gProcess = new ProcessState; return gProcess; } ~~~ 这里可以看出,这个函数作用是返回一个全局唯一的ProcessState实例gProcess。全局唯一实例变量gProcess定义在**frameworks/base/libs/binder/Static.cpp**文件中: ~~~ Mutex gProcessMutex; sp gProcess; ~~~ 再来看ProcessState的构造函数: ~~~ ProcessState::ProcessState() : mDriverFD(open_driver()) , mVMStart(MAP_FAILED) , mManagesContexts(false) , mBinderContextCheckFunc(NULL) , mBinderContextUserData(NULL) , mThreadPoolStarted(false) , mThreadPoolSeq(1) { if (mDriverFD >= 0) { // XXX Ideally, there should be a specific define for whether we // have mmap (or whether we could possibly have the kernel module // availabla). #if !defined(HAVE_WIN32_IPC) // mmap the binder, providing a chunk of virtual address space to receive transactions. mVMStart = mmap(0, BINDER_VM_SIZE, PROT_READ, MAP_PRIVATE | MAP_NORESERVE, mDriverFD, 0); if (mVMStart == MAP_FAILED) { // *sigh* LOGE("Using /dev/binder failed: unable to mmap transaction memory.\n"); close(mDriverFD); mDriverFD = -1; } #else mDriverFD = -1; #endif } if (mDriverFD < 0) { // Need to run without the driver, starting our own thread pool. } } ~~~ 这个函数有两个关键地方,一是通过open_driver函数打开Binder设备文件/dev/binder,并将打开设备文件描述符保存在成员变量mDriverFD中;二是通过mmap来把设备文件/dev/binder映射到内存中。 先看open_driver函数的实现,这个函数同样位于**frameworks/base/libs/binder/ProcessState.cpp**文件中: ~~~ static int open_driver() { if (gSingleProcess) { return -1; } int fd = open("/dev/binder", O_RDWR); if (fd >= 0) { fcntl(fd, F_SETFD, FD_CLOEXEC); int vers; #if defined(HAVE_ANDROID_OS) status_t result = ioctl(fd, BINDER_VERSION, &vers); #else status_t result = -1; errno = EPERM; #endif if (result == -1) { LOGE("Binder ioctl to obtain version failed: %s", strerror(errno)); close(fd); fd = -1; } if (result != 0 || vers != BINDER_CURRENT_PROTOCOL_VERSION) { LOGE("Binder driver protocol does not match user space protocol!"); close(fd); fd = -1; } #if defined(HAVE_ANDROID_OS) size_t maxThreads = 15; result = ioctl(fd, BINDER_SET_MAX_THREADS, &maxThreads); if (result == -1) { LOGE("Binder ioctl to set max threads failed: %s", strerror(errno)); } #endif } else { LOGW("Opening '/dev/binder' failed: %s\n", strerror(errno)); } return fd; } ~~~ 这个函数的作用主要是通过open文件操作函数来打开/dev/binder设备文件,然后再调用ioctl文件控制函数来分别执行BINDER_VERSION和BINDER_SET_MAX_THREADS两个命令来和Binder驱动程序进行交互,前者用于获得当前Binder驱动程序的版本号,后者用于通知Binder驱动程序,MediaPlayerService最多可同时启动15个线程来处理Client端的请求。 open在Binder驱动程序中的具体实现,请参考前面一篇文章浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路,这里不再重复描述。打开/dev/binder设备文件后,Binder驱动程序就为MediaPlayerService进程创建了一个struct binder_proc结构体实例来维护MediaPlayerService进程上下文相关信息。 我们来看一下ioctl文件操作函数执行BINDER_VERSION命令的过程: ~~~ status_t result = ioctl(fd, BINDER_VERSION, &vers); ~~~ 这个函数调用最终进入到Binder驱动程序的binder_ioctl函数中,我们只关注BINDER_VERSION相关的部分逻辑: ~~~ static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { int ret; struct binder_proc *proc = filp->private_data; struct binder_thread *thread; unsigned int size = _IOC_SIZE(cmd); void __user *ubuf = (void __user *)arg; /*printk(KERN_INFO "binder_ioctl: %d:%d %x %lx\n", proc->pid, current->pid, cmd, arg);*/ ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2); if (ret) return ret; mutex_lock(&binder_lock); thread = binder_get_thread(proc); if (thread == NULL) { ret = -ENOMEM; goto err; } switch (cmd) { ...... case BINDER_VERSION: if (size != sizeof(struct binder_version)) { ret = -EINVAL; goto err; } if (put_user(BINDER_CURRENT_PROTOCOL_VERSION, &((struct binder_version *)ubuf)->protocol_version)) { ret = -EINVAL; goto err; } break; ...... } ret = 0; err: ...... return ret; } ~~~ 很简单,只是将BINDER_CURRENT_PROTOCOL_VERSION写入到传入的参数arg指向的用户缓冲区中去就返回了。BINDER_CURRENT_PROTOCOL_VERSION是一个宏,定义在kernel/common/drivers/staging/android/binder.h文件中: ~~~ /* This is the current protocol version. */ #define BINDER_CURRENT_PROTOCOL_VERSION 7 ~~~ 这里为什么要把ubuf转换成struct binder_version之后,再通过其protocol_version成员变量再来写入呢,转了一圈,最终内容还是写入到ubuf中。我们看一下struct binder_version的定义就会明白,同样是在**kernel/common/drivers/staging/android/binder.h**文件中: ~~~ /* Use with BINDER_VERSION, driver fills in fields. */ struct binder_version { /* driver protocol version -- increment with incompatible change */ signed long protocol_version; }; ~~~ 从注释中可以看出来,这里是考虑到兼容性,因为以后很有可能不是用signed long来表示版本号。 这里有一个重要的地方要注意的是,由于这里是打开设备文件/dev/binder之后,第一次进入到binder_ioctl函数,因此,这里调用binder_get_thread的时候,就会为当前线程创建一个struct binder_thread结构体变量来维护线程上下文信息,具体可以参考浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路一文。 接着我们再来看一下ioctl文件操作函数执行BINDER_SET_MAX_THREADS命令的过程: ~~~ result = ioctl(fd, BINDER_SET_MAX_THREADS, &maxThreads); ~~~ 这个函数调用最终进入到Binder驱动程序的binder_ioctl函数中,我们只关注BINDER_SET_MAX_THREADS相关的部分逻辑: ~~~ static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { int ret; struct binder_proc *proc = filp->private_data; struct binder_thread *thread; unsigned int size = _IOC_SIZE(cmd); void __user *ubuf = (void __user *)arg; /*printk(KERN_INFO "binder_ioctl: %d:%d %x %lx\n", proc->pid, current->pid, cmd, arg);*/ ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2); if (ret) return ret; mutex_lock(&binder_lock); thread = binder_get_thread(proc); if (thread == NULL) { ret = -ENOMEM; goto err; } switch (cmd) { ...... case BINDER_SET_MAX_THREADS: if (copy_from_user(&proc->max_threads, ubuf, sizeof(proc->max_threads))) { ret = -EINVAL; goto err; } break; ...... } ret = 0; err: ...... return ret; } ~~~ 这里实现也是非常简单,只是简单地把用户传进来的参数保存在proc->max_threads中就完毕了。注意,这里再调用binder_get_thread函数的时候,就可以在proc->threads中找到当前线程对应的struct binder_thread结构了,因为前面已经创建好并保存在proc->threads红黑树中。 回到ProcessState的构造函数中,这里还通过mmap函数来把设备文件/dev/binder映射到内存中,这个函数在浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路一文也已经有详细介绍,这里不再重复描述。宏BINDER_VM_SIZE就定义在ProcessState.cpp文件中: ~~~ #define BINDER_VM_SIZE ((1*1024*1024) - (4096 *2)) ~~~ mmap函数调用完成之后,Binder驱动程序就为当前进程预留了BINDER_VM_SIZE大小的内存空间了。 这样,ProcessState全局唯一变量gProcess就创建完毕了,回到frameworks/base/media/mediaserver/main_mediaserver.cpp文件中的main函数,下一步是调用defaultServiceManager函数来获得Service Manager的远程接口,这个已经在上一篇文章浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路有详细描述,读者可以回过头去参考一下。 再接下来,就进入到MediaPlayerService::instantiate函数把MediaPlayerService添加到Service Manger中去了。这个函数定义在**frameworks/base/media/libmediaplayerservice/MediaPlayerService.cpp**文件中: ~~~ void MediaPlayerService::instantiate() { defaultServiceManager()->addService( String16("media.player"), new MediaPlayerService()); } ~~~ 我们重点看一下IServiceManger::addService的过程,这有助于我们加深对Binder机制的理解。 在上一篇文章浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路中说到,defaultServiceManager返回的实际是一个BpServiceManger类实例,因此,我们看一下BpServiceManger::addService的实现,这个函数实现在**frameworks/base/libs/binder/IServiceManager.cpp**文件中: ~~~ class BpServiceManager : public BpInterface { public: BpServiceManager(const sp& impl) : BpInterface(impl) { } ...... virtual status_t addService(const String16& name, const sp& service) { Parcel data, reply; data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor()); data.writeString16(name); data.writeStrongBinder(service); status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply); return err == NO_ERROR ? reply.readExceptionCode() } ...... }; ~~~ 这里的Parcel类是用来于序列化进程间通信数据用的。 先来看这一句的调用: ~~~ data.writeInterfaceToken(IServiceManager::getInterfaceDescriptor()); ~~~ IServiceManager::getInterfaceDescriptor()返回来的是一个字符串,即"android.os.IServiceManager",具体可以参考IServiceManger的实现。我们看一下Parcel::writeInterfaceToken的实现,位于frameworks/base/libs/binder/Parcel.cpp文件中: ~~~ // Write RPC headers. (previously just the interface token) status_t Parcel::writeInterfaceToken(const String16& interface) { writeInt32(IPCThreadState::self()->getStrictModePolicy() | STRICT_MODE_PENALTY_GATHER); // currently the interface identification token is just its name as a string return writeString16(interface); } ~~~ 它的作用是写入一个整数和一个字符串到Parcel中去。 再来看下面的调用: ~~~ data.writeString16(name); ~~~ 这里又是写入一个字符串到Parcel中去,这里的name即是上面传进来的“media.player”字符串。 往下看: ~~~ data.writeStrongBinder(service); ~~~ 这里定入一个Binder对象到Parcel去。我们重点看一下这个函数的实现,因为它涉及到进程间传输Binder实体的问题,比较复杂,需要重点关注,同时,也是理解Binder机制的一个重点所在。注意,这里的service参数是一个MediaPlayerService对象。 ~~~ status_t Parcel::writeStrongBinder(const sp& val) { return flatten_binder(ProcessState::self(), val, this); } ~~~ 看到flatten_binder函数,是不是似曾相识的感觉?我们在前面一篇文章浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路中,曾经提到在Binder驱动程序中,使用struct flat_binder_object来表示传输中的一个binder对象,它的定义如下所示: ~~~ /* * This is the flattened representation of a Binder object for transfer * between processes. The 'offsets' supplied as part of a binder transaction * contains offsets into the data where these structures occur. The Binder * driver takes care of re-writing the structure type and data as it moves * between processes. */ struct flat_binder_object { /* 8 bytes for large_flat_header. */ unsigned long type; unsigned long flags; /* 8 bytes of data. */ union { void *binder; /* local object */ signed long handle; /* remote object */ }; /* extra data associated with local object */ void *cookie; }; ~~~ 各个成员变量的含义请参考资料Android Binder设计与实现。 我们进入到flatten_binder函数看看: ~~~ status_t flatten_binder(const sp& proc, const sp& binder, Parcel* out) { flat_binder_object obj; obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS; if (binder != NULL) { IBinder *local = binder->localBinder(); if (!local) { BpBinder *proxy = binder->remoteBinder(); if (proxy == NULL) { LOGE("null proxy"); } const int32_t handle = proxy ? proxy->handle() : 0; obj.type = BINDER_TYPE_HANDLE; obj.handle = handle; obj.cookie = NULL; } else { obj.type = BINDER_TYPE_BINDER; obj.binder = local->getWeakRefs(); obj.cookie = local; } } else { obj.type = BINDER_TYPE_BINDER; obj.binder = NULL; obj.cookie = NULL; } return finish_flatten_binder(binder, obj, out); } ~~~ 首先是初始化flat_binder_object的flags域: ~~~ obj.flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS; ~~~ 0x7f表示处理本Binder实体请求数据包的线程的最低优先级,FLAT_BINDER_FLAG_ACCEPTS_FDS表示这个Binder实体可以接受文件描述符,Binder实体在收到文件描述符时,就会在本进程中打开这个文件。 传进来的binder即为MediaPlayerService::instantiate函数中new出来的MediaPlayerService实例,因此,不为空。又由于MediaPlayerService继承自BBinder类,它是一个本地Binder实体,因此binder->localBinder返回一个BBinder指针,而且肯定不为空,于是执行下面语句: ~~~ obj.type = BINDER_TYPE_BINDER; obj.binder = local->getWeakRefs(); obj.cookie = local; ~~~ 设置了flat_binder_obj的其他成员变量,注意,指向这个Binder实体地址的指针local保存在flat_binder_obj的成员变量cookie中。 函数调用finish_flatten_binder来将这个flat_binder_obj写入到Parcel中去: ~~~ inline static status_t finish_flatten_binder( const sp& binder, const flat_binder_object& flat, Parcel* out) { return out->writeObject(flat, false); } ~~~ Parcel::writeObject的实现如下: ~~~ status_t Parcel::writeObject(const flat_binder_object& val, bool nullMetaData) { const bool enoughData = (mDataPos+sizeof(val)) <= mDataCapacity; const bool enoughObjects = mObjectsSize < mObjectsCapacity; if (enoughData && enoughObjects) { restart_write: *reinterpret_cast(mData+mDataPos) = val; // Need to write meta-data? if (nullMetaData || val.binder != NULL) { mObjects[mObjectsSize] = mDataPos; acquire_object(ProcessState::self(), val, this); mObjectsSize++; } // remember if it's a file descriptor if (val.type == BINDER_TYPE_FD) { mHasFds = mFdsKnown = true; } return finishWrite(sizeof(flat_binder_object)); } if (!enoughData) { const status_t err = growData(sizeof(val)); if (err != NO_ERROR) return err; } if (!enoughObjects) { size_t newSize = ((mObjectsSize+2)*3)/2; size_t* objects = (size_t*)realloc(mObjects, newSize*sizeof(size_t)); if (objects == NULL) return NO_MEMORY; mObjects = objects; mObjectsCapacity = newSize; } goto restart_write; } ~~~ 这里除了把flat_binder_obj写到Parcel里面之内,还要记录这个flat_binder_obj在Parcel里面的偏移位置: ~~~ mObjects[mObjectsSize] = mDataPos; ~~~ 这里因为,如果进程间传输的数据间带有Binder对象的时候,Binder驱动程序需要作进一步的处理,以维护各个Binder实体的一致性,下面我们将会看到Binder驱动程序是怎么处理这些Binder对象的。 再回到BpServiceManager::addService函数中,调用下面语句: ~~~ status_t err = remote()->transact(ADD_SERVICE_TRANSACTION, data, &reply); ~~~ 回到浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路一文中的类图中去看一下,这里的remote成员函数来自于BpRefBase类,它返回一个BpBinder指针。因此,我们继续进入到BpBinder::transact函数中去看看: ~~~ status_t BpBinder::transact( uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) { // Once a binder has died, it will never come back to life. if (mAlive) { status_t status = IPCThreadState::self()->transact( mHandle, code, data, reply, flags); if (status == DEAD_OBJECT) mAlive = 0; return status; } return DEAD_OBJECT; } ~~~ 这里又调用了IPCThreadState::transact进执行实际的操作。注意,这里的mHandle为0,code为ADD_SERVICE_TRANSACTION。ADD_SERVICE_TRANSACTION是上面以参数形式传进来的,那mHandle为什么是0呢?因为这里表示的是Service Manager远程接口,它的句柄值一定是0,具体请参考浅谈Android系统进程间通信(IPC)机制Binder中的Server和Client获得Service Manager接口之路一文。 再进入到IPCThreadState::transact函数,看看做了些什么事情: ~~~ status_t IPCThreadState::transact(int32_t handle, uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) { status_t err = data.errorCheck(); flags |= TF_ACCEPT_FDS; IF_LOG_TRANSACTIONS() { TextOutput::Bundle _b(alog); alog << "BC_TRANSACTION thr " << (void*)pthread_self() << " / hand " << handle << " / code " << TypeCode(code) << ": " << indent << data << dedent << endl; } if (err == NO_ERROR) { LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(), (flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY"); err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL); } if (err != NO_ERROR) { if (reply) reply->setError(err); return (mLastError = err); } if ((flags & TF_ONE_WAY) == 0) { #if 0 if (code == 4) { // relayout LOGI(">>>>>> CALLING transaction 4"); } else { LOGI(">>>>>> CALLING transaction %d", code); } #endif if (reply) { err = waitForResponse(reply); } else { Parcel fakeReply; err = waitForResponse(&fakeReply); } #if 0 if (code == 4) { // relayout LOGI("<<<<<< RETURNING transaction 4"); } else { LOGI("<<<<<< RETURNING transaction %d", code); } #endif IF_LOG_TRANSACTIONS() { TextOutput::Bundle _b(alog); alog << "BR_REPLY thr " << (void*)pthread_self() << " / hand " << handle << ": "; if (reply) alog << indent << *reply << dedent << endl; else alog << "(none requested)" << endl; } } else { err = waitForResponse(NULL, NULL); } return err; } ~~~ IPCThreadState::transact函数的参数flags是一个默认值为0的参数,上面没有传相应的实参进来,因此,这里就为0。 函数首先调用writeTransactionData函数准备好一个struct binder_transaction_data结构体变量,这个是等一下要传输给Binder驱动程序的。struct binder_transaction_data的定义我们在浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路一文中有详细描述,读者不妨回过去读一下。这里为了方便描述,将struct binder_transaction_data的定义再次列出来: ~~~ struct binder_transaction_data { /* The first two are only used for bcTRANSACTION and brTRANSACTION, * identifying the target and contents of the transaction. */ union { size_t handle; /* target descriptor of command transaction */ void *ptr; /* target descriptor of return transaction */ } target; void *cookie; /* target object cookie */ unsigned int code; /* transaction command */ /* General information about the transaction. */ unsigned int flags; pid_t sender_pid; uid_t sender_euid; size_t data_size; /* number of bytes of data */ size_t offsets_size; /* number of bytes of offsets */ /* If this transaction is inline, the data immediately * follows here; otherwise, it ends with a pointer to * the data buffer. */ union { struct { /* transaction data */ const void *buffer; /* offsets from buffer to flat_binder_object structs */ const void *offsets; } ptr; uint8_t buf[8]; } data; }; ~~~ writeTransactionData函数的实现如下: ~~~ status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags, int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer) { binder_transaction_data tr; tr.target.handle = handle; tr.code = code; tr.flags = binderFlags; const status_t err = data.errorCheck(); if (err == NO_ERROR) { tr.data_size = data.ipcDataSize(); tr.data.ptr.buffer = data.ipcData(); tr.offsets_size = data.ipcObjectsCount()*sizeof(size_t); tr.data.ptr.offsets = data.ipcObjects(); } else if (statusBuffer) { tr.flags |= TF_STATUS_CODE; *statusBuffer = err; tr.data_size = sizeof(status_t); tr.data.ptr.buffer = statusBuffer; tr.offsets_size = 0; tr.data.ptr.offsets = NULL; } else { return (mLastError = err); } mOut.writeInt32(cmd); mOut.write(&tr, sizeof(tr)); return NO_ERROR; } ~~~ 注意,这里的cmd为BC_TRANSACTION。 这个函数很简单,在这个场景下,就是执行下面语句来初始化本地变量tr: ~~~ tr.data_size = data.ipcDataSize(); tr.data.ptr.buffer = data.ipcData(); tr.offsets_size = data.ipcObjectsCount()*sizeof(size_t); tr.data.ptr.offsets = data.ipcObjects(); ~~~ 回忆一下上面的内容,写入到tr.data.ptr.buffer的内容相当于下面的内容: ~~~ writeInt32(IPCThreadState::self()->getStrictModePolicy() | STRICT_MODE_PENALTY_GATHER); writeString16("android.os.IServiceManager"); writeString16("media.player"); writeStrongBinder(new MediaPlayerService()); ~~~ 其中包含了一个Binder实体MediaPlayerService,因此需要设置tr.offsets_size就为1,tr.data.ptr.offsets就指向了这个MediaPlayerService的地址在tr.data.ptr.buffer中的偏移量。最后,将tr的内容保存在IPCThreadState的成员变量mOut中。 回到IPCThreadState::transact函数中,接下去看,(flags & TF_ONE_WAY) == 0为true,并且reply不为空,所以最终进入到waitForResponse(reply)这条路径来。我们看一下waitForResponse函数的实现: ~~~ status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult) { int32_t cmd; int32_t err; while (1) { if ((err=talkWithDriver()) < NO_ERROR) break; err = mIn.errorCheck(); if (err < NO_ERROR) break; if (mIn.dataAvail() == 0) continue; cmd = mIn.readInt32(); IF_LOG_COMMANDS() { alog << "Processing waitForResponse Command: " << getReturnString(cmd) << endl; } switch (cmd) { case BR_TRANSACTION_COMPLETE: if (!reply && !acquireResult) goto finish; break; case BR_DEAD_REPLY: err = DEAD_OBJECT; goto finish; case BR_FAILED_REPLY: err = FAILED_TRANSACTION; goto finish; case BR_ACQUIRE_RESULT: { LOG_ASSERT(acquireResult != NULL, "Unexpected brACQUIRE_RESULT"); const int32_t result = mIn.readInt32(); if (!acquireResult) continue; *acquireResult = result ? NO_ERROR : INVALID_OPERATION; } goto finish; case BR_REPLY: { binder_transaction_data tr; err = mIn.read(&tr, sizeof(tr)); LOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY"); if (err != NO_ERROR) goto finish; if (reply) { if ((tr.flags & TF_STATUS_CODE) == 0) { reply->ipcSetDataReference( reinterpret_cast(tr.data.ptr.buffer), tr.data_size, reinterpret_cast(tr.data.ptr.offsets), tr.offsets_size/sizeof(size_t), freeBuffer, this); } else { err = *static_cast(tr.data.ptr.buffer); freeBuffer(NULL, reinterpret_cast(tr.data.ptr.buffer), tr.data_size, reinterpret_cast(tr.data.ptr.offsets), tr.offsets_size/sizeof(size_t), this); } } else { freeBuffer(NULL, reinterpret_cast(tr.data.ptr.buffer), tr.data_size, reinterpret_cast(tr.data.ptr.offsets), tr.offsets_size/sizeof(size_t), this); continue; } } goto finish; default: err = executeCommand(cmd); if (err != NO_ERROR) goto finish; break; } } finish: if (err != NO_ERROR) { if (acquireResult) *acquireResult = err; if (reply) reply->setError(err); mLastError = err; } return err; } ~~~ 这个函数虽然很长,但是主要调用了talkWithDriver函数来与Binder驱动程序进行交互: ~~~ status_t IPCThreadState::talkWithDriver(bool doReceive) { LOG_ASSERT(mProcess->mDriverFD >= 0, "Binder driver is not opened"); binder_write_read bwr; // Is the read buffer empty? const bool needRead = mIn.dataPosition() >= mIn.dataSize(); // We don't want to write anything if we are still reading // from data left in the input buffer and the caller // has requested to read the next data. const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0; bwr.write_size = outAvail; bwr.write_buffer = (long unsigned int)mOut.data(); // This is what we'll read. if (doReceive && needRead) { bwr.read_size = mIn.dataCapacity(); bwr.read_buffer = (long unsigned int)mIn.data(); } else { bwr.read_size = 0; } IF_LOG_COMMANDS() { TextOutput::Bundle _b(alog); if (outAvail != 0) { alog << "Sending commands to driver: " << indent; const void* cmds = (const void*)bwr.write_buffer; const void* end = ((const uint8_t*)cmds)+bwr.write_size; alog << HexDump(cmds, bwr.write_size) << endl; while (cmds < end) cmds = printCommand(alog, cmds); alog << dedent; } alog << "Size of receive buffer: " << bwr.read_size << ", needRead: " << needRead << ", doReceive: " << doReceive << endl; } // Return immediately if there is nothing to do. if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR; bwr.write_consumed = 0; bwr.read_consumed = 0; status_t err; do { IF_LOG_COMMANDS() { alog << "About to read/write, write size = " << mOut.dataSize() << endl; } #if defined(HAVE_ANDROID_OS) if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0) err = NO_ERROR; else err = -errno; #else err = INVALID_OPERATION; #endif IF_LOG_COMMANDS() { alog << "Finished read/write, write size = " << mOut.dataSize() << endl; } } while (err == -EINTR); IF_LOG_COMMANDS() { alog << "Our err: " << (void*)err << ", write consumed: " << bwr.write_consumed << " (of " << mOut.dataSize() << "), read consumed: " << bwr.read_consumed << endl; } if (err >= NO_ERROR) { if (bwr.write_consumed > 0) { if (bwr.write_consumed < (ssize_t)mOut.dataSize()) mOut.remove(0, bwr.write_consumed); else mOut.setDataSize(0); } if (bwr.read_consumed > 0) { mIn.setDataSize(bwr.read_consumed); mIn.setDataPosition(0); } IF_LOG_COMMANDS() { TextOutput::Bundle _b(alog); alog << "Remaining data size: " << mOut.dataSize() << endl; alog << "Received commands from driver: " << indent; const void* cmds = mIn.data(); const void* end = mIn.data() + mIn.dataSize(); alog << HexDump(cmds, mIn.dataSize()) << endl; while (cmds < end) cmds = printReturnCommand(alog, cmds); alog << dedent; } return NO_ERROR; } return err; } ~~~ 这里doReceive和needRead均为1,有兴趣的读者可以自已分析一下。因此,这里告诉Binder驱动程序,先执行write操作,再执行read操作,下面我们将会看到。 最后,通过ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr)进行到Binder驱动程序的binder_ioctl函数,我们只关注cmd为BINDER_WRITE_READ的逻辑: ~~~ static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { int ret; struct binder_proc *proc = filp->private_data; struct binder_thread *thread; unsigned int size = _IOC_SIZE(cmd); void __user *ubuf = (void __user *)arg; /*printk(KERN_INFO "binder_ioctl: %d:%d %x %lx\n", proc->pid, current->pid, cmd, arg);*/ ret = wait_event_interruptible(binder_user_error_wait, binder_stop_on_user_error < 2); if (ret) return ret; mutex_lock(&binder_lock); thread = binder_get_thread(proc); if (thread == NULL) { ret = -ENOMEM; goto err; } switch (cmd) { case BINDER_WRITE_READ: { struct binder_write_read bwr; if (size != sizeof(struct binder_write_read)) { ret = -EINVAL; goto err; } if (copy_from_user(&bwr, ubuf, sizeof(bwr))) { ret = -EFAULT; goto err; } if (binder_debug_mask & BINDER_DEBUG_READ_WRITE) printk(KERN_INFO "binder: %d:%d write %ld at %08lx, read %ld at %08lx\n", proc->pid, thread->pid, bwr.write_size, bwr.write_buffer, bwr.read_size, bwr.read_buffer); if (bwr.write_size > 0) { ret = binder_thread_write(proc, thread, (void __user *)bwr.write_buffer, bwr.write_size, &bwr.write_consumed); if (ret < 0) { bwr.read_consumed = 0; if (copy_to_user(ubuf, &bwr, sizeof(bwr))) ret = -EFAULT; goto err; } } if (bwr.read_size > 0) { ret = binder_thread_read(proc, thread, (void __user *)bwr.read_buffer, bwr.read_size, &bwr.read_consumed, filp->f_flags & O_NONBLOCK); if (!list_empty(&proc->todo)) wake_up_interruptible(&proc->wait); if (ret < 0) { if (copy_to_user(ubuf, &bwr, sizeof(bwr))) ret = -EFAULT; goto err; } } if (binder_debug_mask & BINDER_DEBUG_READ_WRITE) printk(KERN_INFO "binder: %d:%d wrote %ld of %ld, read return %ld of %ld\n", proc->pid, thread->pid, bwr.write_consumed, bwr.write_size, bwr.read_consumed, bwr.read_size); if (copy_to_user(ubuf, &bwr, sizeof(bwr))) { ret = -EFAULT; goto err; } break; } ...... } ret = 0; err: ...... return ret; } ~~~ 函数首先是将用户传进来的参数拷贝到本地变量struct binder_write_read bwr中去。这里bwr.write_size > 0为true,因此,进入到binder_thread_write函数中,我们只关注BC_TRANSACTION部分的逻辑: ~~~ binder_thread_write(struct binder_proc *proc, struct binder_thread *thread, void __user *buffer, int size, signed long *consumed) { uint32_t cmd; void __user *ptr = buffer + *consumed; void __user *end = buffer + size; while (ptr < end && thread->return_error == BR_OK) { if (get_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) { binder_stats.bc[_IOC_NR(cmd)]++; proc->stats.bc[_IOC_NR(cmd)]++; thread->stats.bc[_IOC_NR(cmd)]++; } switch (cmd) { ..... case BC_TRANSACTION: case BC_REPLY: { struct binder_transaction_data tr; if (copy_from_user(&tr, ptr, sizeof(tr))) return -EFAULT; ptr += sizeof(tr); binder_transaction(proc, thread, &tr, cmd == BC_REPLY); break; } ...... } *consumed = ptr - buffer; } return 0; } ~~~ 首先将用户传进来的transact参数拷贝在本地变量struct binder_transaction_data tr中去,接着调用binder_transaction函数进一步处理,这里我们忽略掉无关代码: ~~~ static void binder_transaction(struct binder_proc *proc, struct binder_thread *thread, struct binder_transaction_data *tr, int reply) { struct binder_transaction *t; struct binder_work *tcomplete; size_t *offp, *off_end; struct binder_proc *target_proc; struct binder_thread *target_thread = NULL; struct binder_node *target_node = NULL; struct list_head *target_list; wait_queue_head_t *target_wait; struct binder_transaction *in_reply_to = NULL; struct binder_transaction_log_entry *e; uint32_t return_error; ...... if (reply) { ...... } else { if (tr->target.handle) { ...... } else { target_node = binder_context_mgr_node; if (target_node == NULL) { return_error = BR_DEAD_REPLY; goto err_no_context_mgr_node; } } ...... target_proc = target_node->proc; if (target_proc == NULL) { return_error = BR_DEAD_REPLY; goto err_dead_binder; } ...... } if (target_thread) { ...... } else { target_list = &target_proc->todo; target_wait = &target_proc->wait; } ...... /* TODO: reuse incoming transaction for reply */ t = kzalloc(sizeof(*t), GFP_KERNEL); if (t == NULL) { return_error = BR_FAILED_REPLY; goto err_alloc_t_failed; } ...... tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL); if (tcomplete == NULL) { return_error = BR_FAILED_REPLY; goto err_alloc_tcomplete_failed; } ...... if (!reply && !(tr->flags & TF_ONE_WAY)) t->from = thread; else t->from = NULL; t->sender_euid = proc->tsk->cred->euid; t->to_proc = target_proc; t->to_thread = target_thread; t->code = tr->code; t->flags = tr->flags; t->priority = task_nice(current); t->buffer = binder_alloc_buf(target_proc, tr->data_size, tr->offsets_size, !reply && (t->flags & TF_ONE_WAY)); if (t->buffer == NULL) { return_error = BR_FAILED_REPLY; goto err_binder_alloc_buf_failed; } t->buffer->allow_user_free = 0; t->buffer->debug_id = t->debug_id; t->buffer->transaction = t; t->buffer->target_node = target_node; if (target_node) binder_inc_node(target_node, 1, 0, NULL); offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *))); if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) { ...... return_error = BR_FAILED_REPLY; goto err_copy_data_failed; } if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) { ...... return_error = BR_FAILED_REPLY; goto err_copy_data_failed; } ...... off_end = (void *)offp + tr->offsets_size; for (; offp < off_end; offp++) { struct flat_binder_object *fp; ...... fp = (struct flat_binder_object *)(t->buffer->data + *offp); switch (fp->type) { case BINDER_TYPE_BINDER: case BINDER_TYPE_WEAK_BINDER: { struct binder_ref *ref; struct binder_node *node = binder_get_node(proc, fp->binder); if (node == NULL) { node = binder_new_node(proc, fp->binder, fp->cookie); if (node == NULL) { return_error = BR_FAILED_REPLY; goto err_binder_new_node_failed; } node->min_priority = fp->flags & FLAT_BINDER_FLAG_PRIORITY_MASK; node->accept_fds = !!(fp->flags & FLAT_BINDER_FLAG_ACCEPTS_FDS); } if (fp->cookie != node->cookie) { ...... goto err_binder_get_ref_for_node_failed; } ref = binder_get_ref_for_node(target_proc, node); if (ref == NULL) { return_error = BR_FAILED_REPLY; goto err_binder_get_ref_for_node_failed; } if (fp->type == BINDER_TYPE_BINDER) fp->type = BINDER_TYPE_HANDLE; else fp->type = BINDER_TYPE_WEAK_HANDLE; fp->handle = ref->desc; binder_inc_ref(ref, fp->type == BINDER_TYPE_HANDLE, &thread->todo); ...... } break; ...... } } if (reply) { ...... } else if (!(t->flags & TF_ONE_WAY)) { BUG_ON(t->buffer->async_transaction != 0); t->need_reply = 1; t->from_parent = thread->transaction_stack; thread->transaction_stack = t; } else { ...... } t->work.type = BINDER_WORK_TRANSACTION; list_add_tail(&t->work.entry, target_list); tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE; list_add_tail(&tcomplete->entry, &thread->todo); if (target_wait) wake_up_interruptible(target_wait); return; ...... } ~~~ 注意,这里传进来的参数reply为0,tr->target.handle也为0。因此,target_proc、target_thread、target_node、target_list和target_wait的值分别为: ~~~ target_node = binder_context_mgr_node; target_proc = target_node->proc; target_list = &target_proc->todo; target_wait = &target_proc->wait; ~~~ 接着,分配了一个待处理事务t和一个待完成工作项tcomplete,并执行初始化工作: ~~~ /* TODO: reuse incoming transaction for reply */ t = kzalloc(sizeof(*t), GFP_KERNEL); if (t == NULL) { return_error = BR_FAILED_REPLY; goto err_alloc_t_failed; } ...... tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL); if (tcomplete == NULL) { return_error = BR_FAILED_REPLY; goto err_alloc_tcomplete_failed; } ...... if (!reply && !(tr->flags & TF_ONE_WAY)) t->from = thread; else t->from = NULL; t->sender_euid = proc->tsk->cred->euid; t->to_proc = target_proc; t->to_thread = target_thread; t->code = tr->code; t->flags = tr->flags; t->priority = task_nice(current); t->buffer = binder_alloc_buf(target_proc, tr->data_size, tr->offsets_size, !reply && (t->flags & TF_ONE_WAY)); if (t->buffer == NULL) { return_error = BR_FAILED_REPLY; goto err_binder_alloc_buf_failed; } t->buffer->allow_user_free = 0; t->buffer->debug_id = t->debug_id; t->buffer->transaction = t; t->buffer->target_node = target_node; if (target_node) binder_inc_node(target_node, 1, 0, NULL); offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *))); if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) { ...... return_error = BR_FAILED_REPLY; goto err_copy_data_failed; } if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) { ...... return_error = BR_FAILED_REPLY; goto err_copy_data_failed; } ~~~ 注意,这里的事务t是要交给target_proc处理的,在这个场景之下,就是Service Manager了。因此,下面的语句: ~~~ t->buffer = binder_alloc_buf(target_proc, tr->data_size, tr->offsets_size, !reply && (t->flags & TF_ONE_WAY)); ~~~ 就是在Service Manager的进程空间中分配一块内存来保存用户传进入的参数了: ~~~ if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) { ...... return_error = BR_FAILED_REPLY; goto err_copy_data_failed; } if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) { ...... return_error = BR_FAILED_REPLY; goto err_copy_data_failed; } ~~~ 由于现在target_node要被使用了,增加它的引用计数: ~~~ if (target_node) binder_inc_node(target_node, 1, 0, NULL); ~~~ 接下去的for循环,就是用来处理传输数据中的Binder对象了。在我们的场景中,有一个类型为BINDER_TYPE_BINDER的Binder实体MediaPlayerService: ~~~ switch (fp->type) { case BINDER_TYPE_BINDER: case BINDER_TYPE_WEAK_BINDER: { struct binder_ref *ref; struct binder_node *node = binder_get_node(proc, fp->binder); if (node == NULL) { node = binder_new_node(proc, fp->binder, fp->cookie); if (node == NULL) { return_error = BR_FAILED_REPLY; goto err_binder_new_node_failed; } node->min_priority = fp->flags & FLAT_BINDER_FLAG_PRIORITY_MASK; node->accept_fds = !!(fp->flags & FLAT_BINDER_FLAG_ACCEPTS_FDS); } if (fp->cookie != node->cookie) { ...... goto err_binder_get_ref_for_node_failed; } ref = binder_get_ref_for_node(target_proc, node); if (ref == NULL) { return_error = BR_FAILED_REPLY; goto err_binder_get_ref_for_node_failed; } if (fp->type == BINDER_TYPE_BINDER) fp->type = BINDER_TYPE_HANDLE; else fp->type = BINDER_TYPE_WEAK_HANDLE; fp->handle = ref->desc; binder_inc_ref(ref, fp->type == BINDER_TYPE_HANDLE, &thread->todo); ...... } break; ~~~ 由于是第一次在Binder驱动程序中传输这个MediaPlayerService,调用binder_get_node函数查询这个Binder实体时,会返回空,于是binder_new_node在proc中新建一个,下次就可以直接使用了。 现在,由于要把这个Binder实体MediaPlayerService交给target_proc,也就是Service Manager来管理,也就是说Service Manager要引用这个MediaPlayerService了,于是通过binder_get_ref_for_node为MediaPlayerService创建一个引用,并且通过binder_inc_ref来增加这个引用计数,防止这个引用还在使用过程当中就被销毁。注意,到了这里的时候,t->buffer中的flat_binder_obj的type已经改为BINDER_TYPE_HANDLE,handle已经改为ref->desc,跟原来不一样了,因为这个flat_binder_obj是最终是要传给Service Manager的,而Service Manager只能够通过句柄值来引用这个Binder实体。 最后,把待处理事务加入到target_list列表中去: ~~~ list_add_tail(&t->work.entry, target_list); ~~~ 并且把待完成工作项加入到本线程的todo等待执行列表中去: ~~~ list_add_tail(&tcomplete->entry, &thread->todo); ~~~ 现在目标进程有事情可做了,于是唤醒它: ~~~ if (target_wait) wake_up_interruptible(target_wait); ~~~ 这里就是要唤醒Service Manager进程了。回忆一下前面浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路这篇文章,此时, Service Manager正在binder_thread_read函数中调用wait_event_interruptible进入休眠状态。 这里我们先忽略一下Service Manager被唤醒之后的场景,继续MedaPlayerService的启动过程,然后再回来。 回到binder_ioctl函数,bwr.read_size > 0为true,于是进入binder_thread_read函数: ~~~ static int binder_thread_read(struct binder_proc *proc, struct binder_thread *thread, void __user *buffer, int size, signed long *consumed, int non_block) { void __user *ptr = buffer + *consumed; void __user *end = buffer + size; int ret = 0; int wait_for_proc_work; if (*consumed == 0) { if (put_user(BR_NOOP, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); } retry: wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo); ....... if (wait_for_proc_work) { ....... } else { if (non_block) { if (!binder_has_thread_work(thread)) ret = -EAGAIN; } else ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread)); } ...... while (1) { uint32_t cmd; struct binder_transaction_data tr; struct binder_work *w; struct binder_transaction *t = NULL; if (!list_empty(&thread->todo)) w = list_first_entry(&thread->todo, struct binder_work, entry); else if (!list_empty(&proc->todo) && wait_for_proc_work) w = list_first_entry(&proc->todo, struct binder_work, entry); else { if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */ goto retry; break; } if (end - ptr < sizeof(tr) + 4) break; switch (w->type) { ...... case BINDER_WORK_TRANSACTION_COMPLETE: { cmd = BR_TRANSACTION_COMPLETE; if (put_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); binder_stat_br(proc, thread, cmd); if (binder_debug_mask & BINDER_DEBUG_TRANSACTION_COMPLETE) printk(KERN_INFO "binder: %d:%d BR_TRANSACTION_COMPLETE\n", proc->pid, thread->pid); list_del(&w->entry); kfree(w); binder_stats.obj_deleted[BINDER_STAT_TRANSACTION_COMPLETE]++; } break; ...... } if (!t) continue; ...... } done: ...... return 0; } ~~~ 这里,thread->transaction_stack和thread->todo均不为空,于是wait_for_proc_work为false,由于binder_has_thread_work的时候,返回true,这里因为thread->todo不为空,因此,线程虽然调用了wait_event_interruptible,但是不会睡眠,于是继续往下执行。 由于thread->todo不为空,执行下列语句: ~~~ if (!list_empty(&thread->todo)) w = list_first_entry(&thread->todo, struct binder_work, entry); ~~~ w->type为BINDER_WORK_TRANSACTION_COMPLETE,这是在上面的binder_transaction函数设置的,于是执行: ~~~ switch (w->type) { ...... case BINDER_WORK_TRANSACTION_COMPLETE: { cmd = BR_TRANSACTION_COMPLETE; if (put_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); ...... list_del(&w->entry); kfree(w); } break; ...... } ~~~ 这里就将w从thread->todo删除了。由于这里t为空,重新执行while循环,这时由于已经没有事情可做了,最后就返回到binder_ioctl函数中。注间,这里一共往用户传进来的缓冲区buffer写入了两个整数,分别是BR_NOOP和BR_TRANSACTION_COMPLETE。 binder_ioctl函数返回到用户空间之前,把数据消耗情况拷贝回用户空间中: ~~~ if (copy_to_user(ubuf, &bwr, sizeof(bwr))) { ret = -EFAULT; goto err; } ~~~ 最后返回到IPCThreadState::talkWithDriver函数中,执行下面语句: ~~~ if (err >= NO_ERROR) { if (bwr.write_consumed > 0) { if (bwr.write_consumed < (ssize_t)mOut.dataSize()) mOut.remove(0, bwr.write_consumed); else mOut.setDataSize(0); } if (bwr.read_consumed > 0) { ~~~ ~~~ mIn.setDataSize(bwr.read_consumed); mIn.setDataPosition(0); } ...... return NO_ERROR; } ~~~ 首先是把mOut的数据清空: ~~~ mOut.setDataSize(0); ~~~ 然后设置已经读取的内容的大小: ~~~ mIn.setDataSize(bwr.read_consumed); mIn.setDataPosition(0); ~~~ 然后返回到IPCThreadState::waitForResponse函数中。在IPCThreadState::waitForResponse函数,先是从mIn读出一个整数,这个便是BR_NOOP了,这是一个空操作,什么也不做。然后继续进入IPCThreadState::talkWithDriver函数中。 这时候,下面语句执行后: ~~~ const bool needRead = mIn.dataPosition() >= mIn.dataSize(); ~~~ needRead为false,因为在mIn中,尚有一个整数BR_TRANSACTION_COMPLETE未读出。 这时候,下面语句执行后: ~~~ const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0; ~~~ outAvail等于0。因此,最后bwr.write_size和bwr.read_size均为0,IPCThreadState::talkWithDriver函数什么也不做,直接返回到IPCThreadState::waitForResponse函数中。在IPCThreadState::waitForResponse函数,又继续从mIn读出一个整数,这个便是BR_TRANSACTION_COMPLETE: ~~~ switch (cmd) { case BR_TRANSACTION_COMPLETE: if (!reply && !acquireResult) goto finish; break; ...... } ~~~ reply不为NULL,因此,IPCThreadState::waitForResponse的循环没有结束,继续执行,又进入到IPCThreadState::talkWithDrive中。 这次,needRead就为true了,而outAvail仍为0,所以bwr.read_size不为0,bwr.write_size为0。于是通过: ~~~ ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) ~~~ 进入到Binder驱动程序中的binder_ioctl函数中。由于bwr.write_size为0,bwr.read_size不为0,这次直接就进入到binder_thread_read函数中。这时候,thread->transaction_stack不等于0,但是thread->todo为空,于是线程就通过: ~~~ wait_event_interruptible(thread->wait, binder_has_thread_work(thread)); ~~~ 进入睡眠状态,等待Service Manager来唤醒了。 现在,我们可以回到Service Manager被唤醒的过程了。我们接着前面浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路这篇文章的最后,继续描述。此时, Service Manager正在binder_thread_read函数中调用wait_event_interruptible_exclusive进入休眠状态。上面被MediaPlayerService启动后进程唤醒后,继续执行binder_thread_read函数: ~~~ static int binder_thread_read(struct binder_proc *proc, struct binder_thread *thread, void __user *buffer, int size, signed long *consumed, int non_block) { void __user *ptr = buffer + *consumed; void __user *end = buffer + size; int ret = 0; int wait_for_proc_work; if (*consumed == 0) { if (put_user(BR_NOOP, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); } retry: wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo); ...... if (wait_for_proc_work) { ...... if (non_block) { if (!binder_has_proc_work(proc, thread)) ret = -EAGAIN; } else ret = wait_event_interruptible_exclusive(proc->wait, binder_has_proc_work(proc, thread)); } else { ...... } ...... while (1) { uint32_t cmd; struct binder_transaction_data tr; struct binder_work *w; struct binder_transaction *t = NULL; if (!list_empty(&thread->todo)) w = list_first_entry(&thread->todo, struct binder_work, entry); else if (!list_empty(&proc->todo) && wait_for_proc_work) w = list_first_entry(&proc->todo, struct binder_work, entry); else { if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */ goto retry; break; } if (end - ptr < sizeof(tr) + 4) break; switch (w->type) { case BINDER_WORK_TRANSACTION: { t = container_of(w, struct binder_transaction, work); } break; ...... } if (!t) continue; BUG_ON(t->buffer == NULL); if (t->buffer->target_node) { struct binder_node *target_node = t->buffer->target_node; tr.target.ptr = target_node->ptr; tr.cookie = target_node->cookie; ...... cmd = BR_TRANSACTION; } else { ...... } tr.code = t->code; tr.flags = t->flags; tr.sender_euid = t->sender_euid; if (t->from) { struct task_struct *sender = t->from->proc->tsk; tr.sender_pid = task_tgid_nr_ns(sender, current->nsproxy->pid_ns); } else { tr.sender_pid = 0; } tr.data_size = t->buffer->data_size; tr.offsets_size = t->buffer->offsets_size; tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset; tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *)); if (put_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); if (copy_to_user(ptr, &tr, sizeof(tr))) return -EFAULT; ptr += sizeof(tr); ...... list_del(&t->work.entry); t->buffer->allow_user_free = 1; if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) { t->to_parent = thread->transaction_stack; t->to_thread = thread; thread->transaction_stack = t; } else { t->buffer->transaction = NULL; kfree(t); binder_stats.obj_deleted[BINDER_STAT_TRANSACTION]++; } break; } done: ...... return 0; } ~~~ Service Manager被唤醒之后,就进入while循环开始处理事务了。这里wait_for_proc_work等于1,并且proc->todo不为空,所以从proc->todo列表中得到第一个工作项: ~~~ w = list_first_entry(&proc->todo, struct binder_work, entry); ~~~ 从上面的描述中,我们知道,这个工作项的类型为BINDER_WORK_TRANSACTION,于是通过下面语句得到事务项: ~~~ t = container_of(w, struct binder_transaction, work); ~~~ 接着就是把事务项t中的数据拷贝到本地局部变量struct binder_transaction_data tr中去了: ~~~ if (t->buffer->target_node) { struct binder_node *target_node = t->buffer->target_node; tr.target.ptr = target_node->ptr; tr.cookie = target_node->cookie; ...... cmd = BR_TRANSACTION; } else { ...... } tr.code = t->code; tr.flags = t->flags; tr.sender_euid = t->sender_euid; if (t->from) { struct task_struct *sender = t->from->proc->tsk; tr.sender_pid = task_tgid_nr_ns(sender, current->nsproxy->pid_ns); } else { tr.sender_pid = 0; } tr.data_size = t->buffer->data_size; tr.offsets_size = t->buffer->offsets_size; tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset; tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *)); ~~~ 这里有一个非常重要的地方,是Binder进程间通信机制的精髓所在: ~~~ tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset; tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *)); ~~~ t->buffer->data所指向的地址是内核空间的,现在要把数据返回给Service Manager进程的用户空间,而Service Manager进程的用户空间是不能访问内核空间的数据的,所以这里要作一下处理。怎么处理呢?我们在学面向对象语言的时候,对象的拷贝有深拷贝和浅拷贝之分,深拷贝是把另外分配一块新内存,然后把原始对象的内容搬过去,浅拷贝是并没有为新对象分配一块新空间,而只是分配一个引用,而个引用指向原始对象。Binder机制用的是类似浅拷贝的方法,通过在用户空间分配一个虚拟地址,然后让这个用户空间虚拟地址与 t->buffer->data这个内核空间虚拟地址指向同一个物理地址,这样就可以实现浅拷贝了。怎么样用户空间和内核空间的虚拟地址同时指向同一个物理地址呢?请参考前面一篇文章浅谈Service Manager成为Android进程间通信(IPC)机制Binder守护进程之路,那里有详细描述。这里只要将t->buffer->data加上一个偏移值proc->user_buffer_offset就可以得到t->buffer->data对应的用户空间虚拟地址了。调整了tr.data.ptr.buffer的值之后,不要忘记也要一起调整tr.data.ptr.offsets的值。 接着就是把tr的内容拷贝到用户传进来的缓冲区去了,指针ptr指向这个用户缓冲区的地址: ~~~ if (put_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); if (copy_to_user(ptr, &tr, sizeof(tr))) return -EFAULT; ptr += sizeof(tr); ~~~ 这里可以看出,这里只是对作tr.data.ptr.bufferr和tr.data.ptr.offsets的内容作了浅拷贝。 最后,由于已经处理了这个事务,要把它从todo列表中删除: ~~~ list_del(&t->work.entry); t->buffer->allow_user_free = 1; if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) { t->to_parent = thread->transaction_stack; t->to_thread = thread; thread->transaction_stack = t; } else { t->buffer->transaction = NULL; kfree(t); binder_stats.obj_deleted[BINDER_STAT_TRANSACTION]++; } ~~~ 注意,这里的cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)为true,表明这个事务虽然在驱动程序中已经处理完了,但是它仍然要等待Service Manager完成之后,给驱动程序一个确认,也就是需要等待回复,于是把当前事务t放在thread->transaction_stack队列的头部: ~~~ t->to_parent = thread->transaction_stack; t->to_thread = thread; thread->transaction_stack = t; ~~~ 如果cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)为false,那就不需要等待回复了,直接把事务t删掉。 这个while最后通过一个break跳了出来,最后返回到binder_ioctl函数中: ~~~ static long binder_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { int ret; struct binder_proc *proc = filp->private_data; struct binder_thread *thread; unsigned int size = _IOC_SIZE(cmd); void __user *ubuf = (void __user *)arg; ...... switch (cmd) { case BINDER_WRITE_READ: { struct binder_write_read bwr; if (size != sizeof(struct binder_write_read)) { ret = -EINVAL; goto err; } if (copy_from_user(&bwr, ubuf, sizeof(bwr))) { ret = -EFAULT; goto err; } ...... if (bwr.read_size > 0) { ret = binder_thread_read(proc, thread, (void __user *)bwr.read_buffer, bwr.read_size, &bwr.read_consumed, filp->f_flags & O_NONBLOCK); if (!list_empty(&proc->todo)) wake_up_interruptible(&proc->wait); if (ret < 0) { if (copy_to_user(ubuf, &bwr, sizeof(bwr))) ret = -EFAULT; goto err; } } ...... if (copy_to_user(ubuf, &bwr, sizeof(bwr))) { ret = -EFAULT; goto err; } break; } ...... default: ret = -EINVAL; goto err; } ret = 0; err: ...... return ret; } ~~~ 从binder_thread_read返回来后,再看看proc->todo是否还有事务等待处理,如果是,就把睡眠在proc->wait队列的线程唤醒来处理。最后,把本地变量struct binder_write_read bwr的内容拷贝回到用户传进来的缓冲区中,就返回了。 这里就是返回到**frameworks/base/cmds/servicemanager/binder.c**文件中的binder_loop函数了: ~~~ void binder_loop(struct binder_state *bs, binder_handler func) { int res; struct binder_write_read bwr; unsigned readbuf[32]; bwr.write_size = 0; bwr.write_consumed = 0; bwr.write_buffer = 0; readbuf[0] = BC_ENTER_LOOPER; binder_write(bs, readbuf, sizeof(unsigned)); for (;;) { bwr.read_size = sizeof(readbuf); bwr.read_consumed = 0; bwr.read_buffer = (unsigned) readbuf; res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr); if (res < 0) { LOGE("binder_loop: ioctl failed (%s)\n", strerror(errno)); break; } res = binder_parse(bs, 0, readbuf, bwr.read_consumed, func); if (res == 0) { LOGE("binder_loop: unexpected reply?!\n"); break; } if (res < 0) { LOGE("binder_loop: io error %d %s\n", res, strerror(errno)); break; } } } ~~~ 返回来的数据都放在readbuf中,接着调用binder_parse进行解析: ~~~ int binder_parse(struct binder_state *bs, struct binder_io *bio, uint32_t *ptr, uint32_t size, binder_handler func) { int r = 1; uint32_t *end = ptr + (size / 4); while (ptr < end) { uint32_t cmd = *ptr++; ...... case BR_TRANSACTION: { struct binder_txn *txn = (void *) ptr; if ((end - ptr) * sizeof(uint32_t) < sizeof(struct binder_txn)) { LOGE("parse: txn too small!\n"); return -1; } binder_dump_txn(txn); if (func) { unsigned rdata[256/4]; struct binder_io msg; struct binder_io reply; int res; bio_init(&reply, rdata, sizeof(rdata), 4); bio_init_from_txn(&msg, txn); res = func(bs, txn, &msg, &reply); binder_send_reply(bs, &reply, txn->data, res); } ptr += sizeof(*txn) / sizeof(uint32_t); break; } ...... default: LOGE("parse: OOPS %d\n", cmd); return -1; } } return r; } ~~~ 首先把从Binder驱动程序读出来的数据转换为一个struct binder_txn结构体,保存在txn本地变量中,struct binder_txn定义在**frameworks/base/cmds/servicemanager/binder.h**文件中: ~~~ struct binder_txn { void *target; void *cookie; uint32_t code; uint32_t flags; uint32_t sender_pid; uint32_t sender_euid; uint32_t data_size; uint32_t offs_size; void *data; void *offs; }; ~~~ 函数中还用到了另外一个数据结构struct binder_io,也是定义在frameworks/base/cmds/servicemanager/binder.h文件中: ~~~ struct binder_io { char *data; /* pointer to read/write from */ uint32_t *offs; /* array of offsets */ uint32_t data_avail; /* bytes available in data buffer */ uint32_t offs_avail; /* entries available in offsets array */ char *data0; /* start of data buffer */ uint32_t *offs0; /* start of offsets buffer */ uint32_t flags; uint32_t unused; }; ~~~ 接着往下看,函数调bio_init来初始化reply变量: ~~~ void bio_init(struct binder_io *bio, void *data, uint32_t maxdata, uint32_t maxoffs) { uint32_t n = maxoffs * sizeof(uint32_t); if (n > maxdata) { bio->flags = BIO_F_OVERFLOW; bio->data_avail = 0; bio->offs_avail = 0; return; } bio->data = bio->data0 = data + n; bio->offs = bio->offs0 = data; bio->data_avail = maxdata - n; bio->offs_avail = maxoffs; bio->flags = 0; } ~~~ 接着又调用bio_init_from_txn来初始化msg变量: ~~~ void bio_init_from_txn(struct binder_io *bio, struct binder_txn *txn) { bio->data = bio->data0 = txn->data; bio->offs = bio->offs0 = txn->offs; bio->data_avail = txn->data_size; bio->offs_avail = txn->offs_size / 4; bio->flags = BIO_F_SHARED; } ~~~ 最后,真正进行处理的函数是从参数中传进来的函数指针func,这里就是定义在**frameworks/base/cmds/servicemanager/service_manager.c**文件中的svcmgr_handler函数: ~~~ int svcmgr_handler(struct binder_state *bs, struct binder_txn *txn, struct binder_io *msg, struct binder_io *reply) { struct svcinfo *si; uint16_t *s; unsigned len; void *ptr; uint32_t strict_policy; if (txn->target != svcmgr_handle) return -1; // Equivalent to Parcel::enforceInterface(), reading the RPC // header with the strict mode policy mask and the interface name. // Note that we ignore the strict_policy and don't propagate it // further (since we do no outbound RPCs anyway). strict_policy = bio_get_uint32(msg); s = bio_get_string16(msg, &len); if ((len != (sizeof(svcmgr_id) / 2)) || memcmp(svcmgr_id, s, sizeof(svcmgr_id))) { fprintf(stderr,"invalid id %s\n", str8(s)); return -1; } switch(txn->code) { ...... case SVC_MGR_ADD_SERVICE: s = bio_get_string16(msg, &len); ptr = bio_get_ref(msg); if (do_add_service(bs, s, len, ptr, txn->sender_euid)) return -1; break; ...... } bio_put_uint32(reply, 0); return 0; } ~~~ 回忆一下,在BpServiceManager::addService时,传给Binder驱动程序的参数为: ~~~ writeInt32(IPCThreadState::self()->getStrictModePolicy() | STRICT_MODE_PENALTY_GATHER); writeString16("android.os.IServiceManager"); writeString16("media.player"); writeStrongBinder(new MediaPlayerService()); ~~~ 这里的语句: ~~~ strict_policy = bio_get_uint32(msg); s = bio_get_string16(msg, &len); s = bio_get_string16(msg, &len); ptr = bio_get_ref(msg); ~~~ 就是依次把它们读取出来了,这里,我们只要看一下bio_get_ref的实现。先看一个数据结构struct binder_obj的定义: ~~~ struct binder_object { uint32_t type; uint32_t flags; void *pointer; void *cookie; }; ~~~ 这个结构体其实就是对应struct flat_binder_obj的。 接着看bio_get_ref实现: ~~~ void *bio_get_ref(struct binder_io *bio) { struct binder_object *obj; obj = _bio_get_obj(bio); if (!obj) return 0; if (obj->type == BINDER_TYPE_HANDLE) return obj->pointer; return 0; } ~~~ _bio_get_obj这个函数就不跟进去看了,它的作用就是从binder_io中取得第一个还没取获取过的binder_object。在这个场景下,就是我们最开始传过来代表MediaPlayerService的flat_binder_obj了,这个原始的flat_binder_obj的type为BINDER_TYPE_BINDER,binder为指向MediaPlayerService的弱引用的地址。在前面我们说过,在Binder驱动驱动程序里面,会把这个flat_binder_obj的type改为BINDER_TYPE_HANDLE,handle改为一个句柄值。这里的handle值就等于obj->pointer的值。 回到svcmgr_handler函数,调用do_add_service进一步处理: ~~~ int do_add_service(struct binder_state *bs, uint16_t *s, unsigned len, void *ptr, unsigned uid) { struct svcinfo *si; // LOGI("add_service('%s',%p) uid=%d\n", str8(s), ptr, uid); if (!ptr || (len == 0) || (len > 127)) return -1; if (!svc_can_register(uid, s)) { LOGE("add_service('%s',%p) uid=%d - PERMISSION DENIED\n", str8(s), ptr, uid); return -1; } si = find_svc(s, len); if (si) { if (si->ptr) { LOGE("add_service('%s',%p) uid=%d - ALREADY REGISTERED\n", str8(s), ptr, uid); return -1; } si->ptr = ptr; } else { si = malloc(sizeof(*si) + (len + 1) * sizeof(uint16_t)); if (!si) { LOGE("add_service('%s',%p) uid=%d - OUT OF MEMORY\n", str8(s), ptr, uid); return -1; } si->ptr = ptr; si->len = len; memcpy(si->name, s, (len + 1) * sizeof(uint16_t)); si->name[len] = '\0'; si->death.func = svcinfo_death; si->death.ptr = si; si->next = svclist; svclist = si; } binder_acquire(bs, ptr); binder_link_to_death(bs, ptr, &si->death); return 0; } ~~~ 这个函数的实现很简单,就是把MediaPlayerService这个Binder实体的引用写到一个struct svcinfo结构体中,主要是它的名称和句柄值,然后插入到链接svclist的头部去。这样,Client来向Service Manager查询服务接口时,只要给定服务名称,Service Manger就可以返回相应的句柄值了。 这个函数执行完成后,返回到svcmgr_handler函数,函数的最后,将一个错误码0写到reply变量中去,表示一切正常: ~~~ bio_put_uint32(reply, 0); ~~~ svcmgr_handler函数执行完成后,返回到binder_parse函数,执行下面语句: ~~~ binder_send_reply(bs, &reply, txn->data, res); ~~~ 我们看一下binder_send_reply的实现,从函数名就可以猜到它要做什么了,告诉Binder驱动程序,它完成了Binder驱动程序交给它的任务了。 ~~~ void binder_send_reply(struct binder_state *bs, struct binder_io *reply, void *buffer_to_free, int status) { struct { uint32_t cmd_free; void *buffer; uint32_t cmd_reply; struct binder_txn txn; } __attribute__((packed)) data; data.cmd_free = BC_FREE_BUFFER; data.buffer = buffer_to_free; data.cmd_reply = BC_REPLY; data.txn.target = 0; data.txn.cookie = 0; data.txn.code = 0; if (status) { data.txn.flags = TF_STATUS_CODE; data.txn.data_size = sizeof(int); data.txn.offs_size = 0; data.txn.data = &status; data.txn.offs = 0; } else { data.txn.flags = 0; data.txn.data_size = reply->data - reply->data0; data.txn.offs_size = ((char*) reply->offs) - ((char*) reply->offs0); data.txn.data = reply->data0; data.txn.offs = reply->offs0; } binder_write(bs, &data, sizeof(data)); } ~~~ 从这里可以看出,binder_send_reply告诉Binder驱动程序执行BC_FREE_BUFFER和BC_REPLY命令,前者释放之前在binder_transaction分配的空间,地址为buffer_to_free,buffer_to_free这个地址是Binder驱动程序把自己在内核空间用的地址转换成用户空间地址再传给Service Manager的,所以Binder驱动程序拿到这个地址后,知道怎么样释放这个空间;后者告诉MediaPlayerService,它的addService操作已经完成了,错误码是0,保存在data.txn.data中。 再来看binder_write函数: ~~~ int binder_write(struct binder_state *bs, void *data, unsigned len) { struct binder_write_read bwr; int res; bwr.write_size = len; bwr.write_consumed = 0; bwr.write_buffer = (unsigned) data; bwr.read_size = 0; bwr.read_consumed = 0; bwr.read_buffer = 0; res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr); if (res < 0) { fprintf(stderr,"binder_write: ioctl failed (%s)\n", strerror(errno)); } return res; } ~~~ 这里可以看出,只有写操作,没有读操作,即read_size为0。 这里又是一个ioctl的BINDER_WRITE_READ操作。直入到驱动程序的binder_ioctl函数后,执行BINDER_WRITE_READ命令,这里就不累述了。 最后,从binder_ioctl执行到binder_thread_write函数,我们首先看第一个命令BC_FREE_BUFFER: ~~~ int binder_thread_write(struct binder_proc *proc, struct binder_thread *thread, void __user *buffer, int size, signed long *consumed) { uint32_t cmd; void __user *ptr = buffer + *consumed; void __user *end = buffer + size; while (ptr < end && thread->return_error == BR_OK) { if (get_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) { binder_stats.bc[_IOC_NR(cmd)]++; proc->stats.bc[_IOC_NR(cmd)]++; thread->stats.bc[_IOC_NR(cmd)]++; } switch (cmd) { ...... case BC_FREE_BUFFER: { void __user *data_ptr; struct binder_buffer *buffer; if (get_user(data_ptr, (void * __user *)ptr)) return -EFAULT; ptr += sizeof(void *); buffer = binder_buffer_lookup(proc, data_ptr); if (buffer == NULL) { binder_user_error("binder: %d:%d " "BC_FREE_BUFFER u%p no match\n", proc->pid, thread->pid, data_ptr); break; } if (!buffer->allow_user_free) { binder_user_error("binder: %d:%d " "BC_FREE_BUFFER u%p matched " "unreturned buffer\n", proc->pid, thread->pid, data_ptr); break; } if (binder_debug_mask & BINDER_DEBUG_FREE_BUFFER) printk(KERN_INFO "binder: %d:%d BC_FREE_BUFFER u%p found buffer %d for %s transaction\n", proc->pid, thread->pid, data_ptr, buffer->debug_id, buffer->transaction ? "active" : "finished"); if (buffer->transaction) { buffer->transaction->buffer = NULL; buffer->transaction = NULL; } if (buffer->async_transaction && buffer->target_node) { BUG_ON(!buffer->target_node->has_async_transaction); if (list_empty(&buffer->target_node->async_todo)) buffer->target_node->has_async_transaction = 0; else list_move_tail(buffer->target_node->async_todo.next, &thread->todo); } binder_transaction_buffer_release(proc, buffer, NULL); binder_free_buf(proc, buffer); break; } ...... *consumed = ptr - buffer; } return 0; } ~~~ 首先通过看这个语句: ~~~ get_user(data_ptr, (void * __user *)ptr) ~~~ 这个是获得要删除的Buffer的用户空间地址,接着通过下面这个语句来找到这个地址对应的struct binder_buffer信息: ~~~ buffer = binder_buffer_lookup(proc, data_ptr); ~~~ 因为这个空间是前面在binder_transaction里面分配的,所以这里一定能找到。 最后,就可以释放这块内存了: ~~~ binder_transaction_buffer_release(proc, buffer, NULL); binder_free_buf(proc, buffer); ~~~ 再来看另外一个命令BC_REPLY: ~~~ int binder_thread_write(struct binder_proc *proc, struct binder_thread *thread, void __user *buffer, int size, signed long *consumed) { uint32_t cmd; void __user *ptr = buffer + *consumed; void __user *end = buffer + size; while (ptr < end && thread->return_error == BR_OK) { if (get_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); if (_IOC_NR(cmd) < ARRAY_SIZE(binder_stats.bc)) { binder_stats.bc[_IOC_NR(cmd)]++; proc->stats.bc[_IOC_NR(cmd)]++; thread->stats.bc[_IOC_NR(cmd)]++; } switch (cmd) { ...... case BC_TRANSACTION: case BC_REPLY: { struct binder_transaction_data tr; if (copy_from_user(&tr, ptr, sizeof(tr))) return -EFAULT; ptr += sizeof(tr); binder_transaction(proc, thread, &tr, cmd == BC_REPLY); break; } ...... *consumed = ptr - buffer; } return 0; } ~~~ 又再次进入到binder_transaction函数: ~~~ static void binder_transaction(struct binder_proc *proc, struct binder_thread *thread, struct binder_transaction_data *tr, int reply) { struct binder_transaction *t; struct binder_work *tcomplete; size_t *offp, *off_end; struct binder_proc *target_proc; struct binder_thread *target_thread = NULL; struct binder_node *target_node = NULL; struct list_head *target_list; wait_queue_head_t *target_wait; struct binder_transaction *in_reply_to = NULL; struct binder_transaction_log_entry *e; uint32_t return_error; ...... if (reply) { in_reply_to = thread->transaction_stack; if (in_reply_to == NULL) { ...... return_error = BR_FAILED_REPLY; goto err_empty_call_stack; } binder_set_nice(in_reply_to->saved_priority); if (in_reply_to->to_thread != thread) { ....... goto err_bad_call_stack; } thread->transaction_stack = in_reply_to->to_parent; target_thread = in_reply_to->from; if (target_thread == NULL) { return_error = BR_DEAD_REPLY; goto err_dead_binder; } if (target_thread->transaction_stack != in_reply_to) { ...... return_error = BR_FAILED_REPLY; in_reply_to = NULL; target_thread = NULL; goto err_dead_binder; } target_proc = target_thread->proc; } else { ...... } if (target_thread) { e->to_thread = target_thread->pid; target_list = &target_thread->todo; target_wait = &target_thread->wait; } else { ...... } /* TODO: reuse incoming transaction for reply */ t = kzalloc(sizeof(*t), GFP_KERNEL); if (t == NULL) { return_error = BR_FAILED_REPLY; goto err_alloc_t_failed; } tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL); if (tcomplete == NULL) { return_error = BR_FAILED_REPLY; goto err_alloc_tcomplete_failed; } if (!reply && !(tr->flags & TF_ONE_WAY)) t->from = thread; else t->from = NULL; t->sender_euid = proc->tsk->cred->euid; t->to_proc = target_proc; t->to_thread = target_thread; t->code = tr->code; t->flags = tr->flags; t->priority = task_nice(current); t->buffer = binder_alloc_buf(target_proc, tr->data_size, tr->offsets_size, !reply && (t->flags & TF_ONE_WAY)); if (t->buffer == NULL) { return_error = BR_FAILED_REPLY; goto err_binder_alloc_buf_failed; } t->buffer->allow_user_free = 0; t->buffer->debug_id = t->debug_id; t->buffer->transaction = t; t->buffer->target_node = target_node; if (target_node) binder_inc_node(target_node, 1, 0, NULL); offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *))); if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) { binder_user_error("binder: %d:%d got transaction with invalid " "data ptr\n", proc->pid, thread->pid); return_error = BR_FAILED_REPLY; goto err_copy_data_failed; } if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) { binder_user_error("binder: %d:%d got transaction with invalid " "offsets ptr\n", proc->pid, thread->pid); return_error = BR_FAILED_REPLY; goto err_copy_data_failed; } ...... if (reply) { BUG_ON(t->buffer->async_transaction != 0); binder_pop_transaction(target_thread, in_reply_to); } else if (!(t->flags & TF_ONE_WAY)) { ...... } else { ...... } t->work.type = BINDER_WORK_TRANSACTION; list_add_tail(&t->work.entry, target_list); tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE; list_add_tail(&tcomplete->entry, &thread->todo); if (target_wait) wake_up_interruptible(target_wait); return; ...... } ~~~ 注意,这里的reply为1,我们忽略掉其它无关代码。 前面Service Manager正在binder_thread_read函数中被MediaPlayerService启动后进程唤醒后,在最后会把当前处理完的事务放在thread->transaction_stack中: ~~~ if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) { t->to_parent = thread->transaction_stack; t->to_thread = thread; thread->transaction_stack = t; } ~~~ 所以,这里,首先是把它这个binder_transaction取回来,并且放在本地变量in_reply_to中: ~~~ in_reply_to = thread->transaction_stack; ~~~ 接着就可以通过in_reply_to得到最终发出这个事务请求的线程和进程: ~~~ target_thread = in_reply_to->from; target_proc = target_thread->proc; ~~~ 然后得到target_list和target_wait: ~~~ target_list = &target_thread->todo; target_wait = &target_thread->wait; ~~~ 下面这一段代码: ~~~ /* TODO: reuse incoming transaction for reply */ t = kzalloc(sizeof(*t), GFP_KERNEL); if (t == NULL) { return_error = BR_FAILED_REPLY; goto err_alloc_t_failed; } tcomplete = kzalloc(sizeof(*tcomplete), GFP_KERNEL); if (tcomplete == NULL) { return_error = BR_FAILED_REPLY; goto err_alloc_tcomplete_failed; } if (!reply && !(tr->flags & TF_ONE_WAY)) t->from = thread; else t->from = NULL; t->sender_euid = proc->tsk->cred->euid; t->to_proc = target_proc; t->to_thread = target_thread; t->code = tr->code; t->flags = tr->flags; t->priority = task_nice(current); t->buffer = binder_alloc_buf(target_proc, tr->data_size, tr->offsets_size, !reply && (t->flags & TF_ONE_WAY)); if (t->buffer == NULL) { return_error = BR_FAILED_REPLY; goto err_binder_alloc_buf_failed; } t->buffer->allow_user_free = 0; t->buffer->debug_id = t->debug_id; t->buffer->transaction = t; t->buffer->target_node = target_node; if (target_node) binder_inc_node(target_node, 1, 0, NULL); offp = (size_t *)(t->buffer->data + ALIGN(tr->data_size, sizeof(void *))); if (copy_from_user(t->buffer->data, tr->data.ptr.buffer, tr->data_size)) { binder_user_error("binder: %d:%d got transaction with invalid " "data ptr\n", proc->pid, thread->pid); return_error = BR_FAILED_REPLY; goto err_copy_data_failed; } if (copy_from_user(offp, tr->data.ptr.offsets, tr->offsets_size)) { binder_user_error("binder: %d:%d got transaction with invalid " "offsets ptr\n", proc->pid, thread->pid); return_error = BR_FAILED_REPLY; goto err_copy_data_failed; } ~~~ 我们在前面已经分析过了,这里不再重复。但是有一点要注意的是,这里target_node为NULL,因此,t->buffer->target_node也为NULL。 函数本来有一个for循环,用来处理数据中的Binder对象,这里由于没有Binder对象,所以就略过了。到了下面这句代码: ~~~ binder_pop_transaction(target_thread, in_reply_to); ~~~ 我们看看做了什么事情: ~~~ static void binder_pop_transaction( struct binder_thread *target_thread, struct binder_transaction *t) { if (target_thread) { BUG_ON(target_thread->transaction_stack != t); BUG_ON(target_thread->transaction_stack->from != target_thread); target_thread->transaction_stack = target_thread->transaction_stack->from_parent; t->from = NULL; } t->need_reply = 0; if (t->buffer) t->buffer->transaction = NULL; kfree(t); binder_stats.obj_deleted[BINDER_STAT_TRANSACTION]++; } ~~~ 由于到了这里,已经不需要in_reply_to这个transaction了,就把它删掉。 回到binder_transaction函数: ~~~ t->work.type = BINDER_WORK_TRANSACTION; list_add_tail(&t->work.entry, target_list); tcomplete->type = BINDER_WORK_TRANSACTION_COMPLETE; list_add_tail(&tcomplete->entry, &thread->todo); ~~~ 和前面一样,分别把t和tcomplete分别放在target_list和thread->todo队列中,这里的target_list指的就是最初调用IServiceManager::addService的MediaPlayerService的Server主线程的的thread->todo队列了,而thread->todo指的是Service Manager中用来回复IServiceManager::addService请求的线程。 最后,唤醒等待在target_wait队列上的线程了,就是最初调用IServiceManager::addService的MediaPlayerService的Server主线程了,它最后在binder_thread_read函数中睡眠在thread->wait上,就是这里的target_wait了: ~~~ if (target_wait) wake_up_interruptible(target_wait); ~~~ 这样,Service Manger回复调用IServiceManager::addService请求就算完成了,重新回到frameworks/base/cmds/servicemanager/binder.c文件中的binder_loop函数等待下一个Client请求的到来。事实上,Service Manger回到binder_loop函数再次执行ioctl函数时候,又会再次进入到binder_thread_read函数。这时个会发现thread->todo不为空,这是因为刚才我们调用了: ~~~ list_add_tail(&tcomplete->entry, &thread->todo); ~~~ 把一个工作项tcompelete放在了在thread->todo中,这个tcompelete的type为BINDER_WORK_TRANSACTION_COMPLETE,因此,Binder驱动程序会执行下面操作: ~~~ switch (w->type) { case BINDER_WORK_TRANSACTION_COMPLETE: { cmd = BR_TRANSACTION_COMPLETE; if (put_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); list_del(&w->entry); kfree(w); } break; ...... } ~~~ binder_loop函数执行完这个ioctl调用后,才会在下一次调用ioctl进入到Binder驱动程序进入休眠状态,等待下一次Client的请求。 上面讲到调用IServiceManager::addService的MediaPlayerService的Server主线程被唤醒了,于是,重新执行binder_thread_read函数: ~~~ static int binder_thread_read(struct binder_proc *proc, struct binder_thread *thread, void __user *buffer, int size, signed long *consumed, int non_block) { void __user *ptr = buffer + *consumed; void __user *end = buffer + size; int ret = 0; int wait_for_proc_work; if (*consumed == 0) { if (put_user(BR_NOOP, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); } retry: wait_for_proc_work = thread->transaction_stack == NULL && list_empty(&thread->todo); ...... if (wait_for_proc_work) { ...... } else { if (non_block) { if (!binder_has_thread_work(thread)) ret = -EAGAIN; } else ret = wait_event_interruptible(thread->wait, binder_has_thread_work(thread)); } ...... while (1) { uint32_t cmd; struct binder_transaction_data tr; struct binder_work *w; struct binder_transaction *t = NULL; if (!list_empty(&thread->todo)) w = list_first_entry(&thread->todo, struct binder_work, entry); else if (!list_empty(&proc->todo) && wait_for_proc_work) w = list_first_entry(&proc->todo, struct binder_work, entry); else { if (ptr - buffer == 4 && !(thread->looper & BINDER_LOOPER_STATE_NEED_RETURN)) /* no data added */ goto retry; break; } ...... switch (w->type) { case BINDER_WORK_TRANSACTION: { t = container_of(w, struct binder_transaction, work); } break; ...... } if (!t) continue; BUG_ON(t->buffer == NULL); if (t->buffer->target_node) { ...... } else { tr.target.ptr = NULL; tr.cookie = NULL; cmd = BR_REPLY; } tr.code = t->code; tr.flags = t->flags; tr.sender_euid = t->sender_euid; if (t->from) { ...... } else { tr.sender_pid = 0; } tr.data_size = t->buffer->data_size; tr.offsets_size = t->buffer->offsets_size; tr.data.ptr.buffer = (void *)t->buffer->data + proc->user_buffer_offset; tr.data.ptr.offsets = tr.data.ptr.buffer + ALIGN(t->buffer->data_size, sizeof(void *)); if (put_user(cmd, (uint32_t __user *)ptr)) return -EFAULT; ptr += sizeof(uint32_t); if (copy_to_user(ptr, &tr, sizeof(tr))) return -EFAULT; ptr += sizeof(tr); ...... list_del(&t->work.entry); t->buffer->allow_user_free = 1; if (cmd == BR_TRANSACTION && !(t->flags & TF_ONE_WAY)) { ...... } else { t->buffer->transaction = NULL; kfree(t); binder_stats.obj_deleted[BINDER_STAT_TRANSACTION]++; } break; } done: ...... return 0; } ~~~ 在while循环中,从thread->todo得到w,w->type为BINDER_WORK_TRANSACTION,于是,得到t。从上面可以知道,Service Manager反回了一个0回来,写在t->buffer->data里面,现在把t->buffer->data加上proc->user_buffer_offset,得到用户空间地址,保存在tr.data.ptr.buffer里面,这样用户空间就可以访问这个返回码了。由于cmd不等于BR_TRANSACTION,这时就可以把t删除掉了,因为以后都不需要用了。 执行完这个函数后,就返回到binder_ioctl函数,执行下面语句,把数据返回给用户空间: ~~~ if (copy_to_user(ubuf, &bwr, sizeof(bwr))) { ret = -EFAULT; goto err; } ~~~ 接着返回到用户空间IPCThreadState::talkWithDriver函数,最后返回到IPCThreadState::waitForResponse函数,最终执行到下面语句: ~~~ status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult) { int32_t cmd; int32_t err; while (1) { if ((err=talkWithDriver()) < NO_ERROR) break; ...... cmd = mIn.readInt32(); ...... switch (cmd) { ...... case BR_REPLY: { binder_transaction_data tr; err = mIn.read(&tr, sizeof(tr)); LOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY"); if (err != NO_ERROR) goto finish; if (reply) { if ((tr.flags & TF_STATUS_CODE) == 0) { reply->ipcSetDataReference( reinterpret_cast(tr.data.ptr.buffer), tr.data_size, reinterpret_cast(tr.data.ptr.offsets), tr.offsets_size/sizeof(size_t), freeBuffer, this); } else { ...... } } else { ...... } } goto finish; ...... } } finish: ...... return err; } ~~~ 注意,这里的tr.flags等于0,这个是在上面的binder_send_reply函数里设置的。最终把结果保存在reply了: ~~~ reply->ipcSetDataReference( reinterpret_cast(tr.data.ptr.buffer), tr.data_size, reinterpret_cast(tr.data.ptr.offsets), tr.offsets_size/sizeof(size_t), freeBuffer, this); ~~~ 这个函数我们就不看了,有兴趣的读者可以研究一下。 从这里层层返回,最后回到MediaPlayerService::instantiate函数中。 至此,IServiceManager::addService终于执行完毕了。这个过程非常复杂,但是如果我们能够深刻地理解这一过程,将能很好地理解Binder机制的设计思想和实现过程。这里,对IServiceManager::addService过程中MediaPlayerService、ServiceManager和BinderDriver之间的交互作一个小结: ![](http://hi.csdn.net/attachment/201107/24/0_1311530322F5jj.gif) 回到frameworks/base/media/mediaserver/main_mediaserver.cpp文件中的main函数,接下去还要执行下面两个函数: ~~~ ProcessState::self()->startThreadPool(); IPCThreadState::self()->joinThreadPool(); ~~~ 首先看ProcessState::startThreadPool函数的实现: ~~~ void ProcessState::startThreadPool() { AutoMutex _l(mLock); if (!mThreadPoolStarted) { mThreadPoolStarted = true; spawnPooledThread(true); } } ~~~ 这里调用spwanPooledThread: ~~~ void ProcessState::spawnPooledThread(bool isMain) { if (mThreadPoolStarted) { int32_t s = android_atomic_add(1, &mThreadPoolSeq); char buf[32]; sprintf(buf, "Binder Thread #%d", s); LOGV("Spawning new pooled thread, name=%s\n", buf); sp t = new PoolThread(isMain); t->run(buf); } } ~~~ 这里主要是创建一个线程,PoolThread继续Thread类,Thread类定义在frameworks/base/libs/utils/Threads.cpp文件中,其run函数最终调用子类的threadLoop函数,这里即为PoolThread::threadLoop函数: ~~~ virtual bool threadLoop() { IPCThreadState::self()->joinThreadPool(mIsMain); return false; } ~~~ 这里和frameworks/base/media/mediaserver/main_mediaserver.cpp文件中的main函数一样,最终都是调用了IPCThreadState::joinThreadPool函数,它们的区别是,一个参数是true,一个是默认值false。我们来看一下这个函数的实现: ~~~ void IPCThreadState::joinThreadPool(bool isMain) { LOG_THREADPOOL("**** THREAD %p (PID %d) IS JOINING THE THREAD POOL\n", (void*)pthread_self(), getpid()); mOut.writeInt32(isMain ? BC_ENTER_LOOPER : BC_REGISTER_LOOPER); ...... status_t result; do { int32_t cmd; ....... // now get the next command to be processed, waiting if necessary result = talkWithDriver(); if (result >= NO_ERROR) { size_t IN = mIn.dataAvail(); if (IN < sizeof(int32_t)) continue; cmd = mIn.readInt32(); ...... } result = executeCommand(cmd); } ...... } while (result != -ECONNREFUSED && result != -EBADF); ....... mOut.writeInt32(BC_EXIT_LOOPER); talkWithDriver(false); } ~~~ 这个函数最终是在一个无穷循环中,通过调用talkWithDriver函数来和Binder驱动程序进行交互,实际上就是调用talkWithDriver来等待Client的请求,然后再调用executeCommand来处理请求,而在executeCommand函数中,最终会调用BBinder::transact来真正处理Client的请求: ~~~ status_t IPCThreadState::executeCommand(int32_t cmd) { BBinder* obj; RefBase::weakref_type* refs; status_t result = NO_ERROR; switch (cmd) { ...... case BR_TRANSACTION: { binder_transaction_data tr; result = mIn.read(&tr, sizeof(tr)); ...... Parcel reply; ...... if (tr.target.ptr) { sp b((BBinder*)tr.cookie); const status_t error = b->transact(tr.code, buffer, &reply, tr.flags); if (error < NO_ERROR) reply.setError(error); } else { const status_t error = the_context_object->transact(tr.code, buffer, &reply, tr.flags); if (error < NO_ERROR) reply.setError(error); } ...... } break; ....... } if (result != NO_ERROR) { mLastError = result; } return result; } ~~~ 接下来再看一下BBinder::transact的实现: ~~~ status_t BBinder::transact( uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) { data.setDataPosition(0); status_t err = NO_ERROR; switch (code) { case PING_TRANSACTION: reply->writeInt32(pingBinder()); break; default: err = onTransact(code, data, reply, flags); break; } if (reply != NULL) { reply->setDataPosition(0); } return err; } ~~~ 最终会调用onTransact函数来处理。在这个场景中,BnMediaPlayerService继承了BBinder类,并且重载了onTransact函数,因此,这里实际上是调用了BnMediaPlayerService::onTransact函数,这个函数定义在**frameworks/base/libs/media/libmedia/IMediaPlayerService.cpp**文件中: ~~~ status_t BnMediaPlayerService::onTransact( uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags) { switch(code) { case CREATE_URL: { ...... } break; case CREATE_FD: { ...... } break; case DECODE_URL: { ...... } break; case DECODE_FD: { ...... } break; case CREATE_MEDIA_RECORDER: { ...... } break; case CREATE_METADATA_RETRIEVER: { ...... } break; case GET_OMX: { ...... } break; default: return BBinder::onTransact(code, data, reply, flags); } } ~~~ 至此,我们就以MediaPlayerService为例,完整地介绍了Android系统进程间通信Binder机制中的Server启动过程。Server启动起来之后,就会在一个无穷循环中等待Client的请求了。在下一篇文章中,我们将介绍Client如何通过Service Manager远程接口来获得Server远程接口,进而调用Server远程接口来使用Server提供的服务,敬请关注。
';