PgSQL · 实战经验 · 分组TOP性能提升44倍
最后更新于:2022-04-01 10:34:14
## 业务背景
按分组取出TOP值,是非常常见的业务需求。
比如提取每位歌手的下载量TOP 10的曲目、提取每个城市纳税前10的人或企业。
## 传统方法
传统的方法是使用窗口查询,PostgreSQL是支持窗口查询的。
例子
测试表和测试数据,生成10000个分组,1000万条记录。
~~~
postgres=# create table tbl(c1 int, c2 int, c3 int);
CREATE TABLE
postgres=# create index idx1 on tbl(c1,c2);
CREATE INDEX
postgres=# insert into tbl select mod(trunc(random()*10000)::int, 10000), trunc(random()*10000000) from generate_series(1,10000000);
INSERT 0 10000000
~~~
使用窗口查询的执行计划
~~~
postgres=# explain select * from (select row_number() over(partition by c1 order by c2) as rn,* from tbl) t where t.rn<=10;
QUERY PLAN
----------------------------------------------------------------------------------------
Subquery Scan on t (cost=0.43..770563.03 rows=3333326 width=20)
Filter: (t.rn <= 10)
-> WindowAgg (cost=0.43..645563.31 rows=9999977 width=12)
-> Index Scan using idx1 on tbl (cost=0.43..470563.72 rows=9999977 width=12)
(4 rows)
~~~
使用窗口查询的结果举例
~~~
postgres=# select * from (select row_number() over(partition by c1 order by c2) as rn,* from tbl) t where t.rn<=10;
rn | c1 | c2 | c3
----+------+--------+----
1 | 0 | 1657 |
2 | 0 | 3351 |
3 | 0 | 6347 |
4 | 0 | 12688 |
5 | 0 | 16991 |
6 | 0 | 19584 |
7 | 0 | 24694 |
8 | 0 | 36646 |
9 | 0 | 40882 |
10 | 0 | 41599 |
1 | 1 | 14465 |
2 | 1 | 29032 |
3 | 1 | 39969 |
4 | 1 | 41094 |
5 | 1 | 69481 |
6 | 1 | 70919 |
7 | 1 | 75575 |
8 | 1 | 81102 |
9 | 1 | 87496 |
10 | 1 | 90603 |
......
~~~
使用窗口查询的效率,20.1秒
~~~
postgres=# explain (analyze,verbose,costs,timing,buffers) select * from (select row_number() over(partition by c1 order by c2) as rn,* from tbl) t where t.rn<=10;
QUERY PLAN
----------------------------------------------------------------------------------------------------------------------------------------------------
Subquery Scan on t (cost=0.43..770563.03 rows=3333326 width=20) (actual time=0.040..20813.469 rows=100000 loops=1)
Output: t.rn, t.c1, t.c2, t.c3
Filter: (t.rn <= 10)
Rows Removed by Filter: 9900000
Buffers: shared hit=10035535
-> WindowAgg (cost=0.43..645563.31 rows=9999977 width=12) (actual time=0.035..18268.027 rows=10000000 loops=1)
Output: row_number() OVER (?), tbl.c1, tbl.c2, tbl.c3
Buffers: shared hit=10035535
-> Index Scan using idx1 on public.tbl (cost=0.43..470563.72 rows=9999977 width=12) (actual time=0.026..11913.677 rows=10000000 loops=1)
Output: tbl.c1, tbl.c2, tbl.c3
Buffers: shared hit=10035535
Planning time: 0.110 ms
Execution time: 20833.747 ms
(13 rows)
~~~
## 雕虫小技
如何优化?
可以参考我之前写的,[使用递归查询,优化count distinct的方法](https://yq.aliyun.com/articles/39689)。
本文同样需要用到递归查询,获得分组ID
~~~
postgres=# with recursive t1 as (
postgres(# (select min(c1) c1 from tbl )
postgres(# union all
postgres(# (select (select min(tbl.c1) c1 from tbl where tbl.c1>t.c1) c1 from t1 t where t.c1 is not null)
postgres(# )
postgres-# select * from t1;
~~~
写成SRF函数,如下
~~~
postgres=# create or replace function f() returns setof tbl as $$
postgres$# declare
postgres$# v int;
postgres$# begin
postgres$# for v in with recursive t1 as (
postgres$# (select min(c1) c1 from tbl )
postgres$# union all
postgres$# (select (select min(tbl.c1) c1 from tbl where tbl.c1>t.c1) c1 from t1 t where t.c1 is not null)
postgres$# )
postgres$# select * from t1
postgres$# LOOP
postgres$# return query select * from tbl where c1=v order by c2 limit 10;
postgres$# END LOOP;
postgres$# return;
postgres$#
postgres$# end;
postgres$# $$ language plpgsql strict;
CREATE FUNCTION
~~~
优化后的查询结果例子
~~~
postgres=# select * from f();
c1 | c2 | c3
------+--------+----
0 | 1657 |
0 | 3351 |
0 | 6347 |
0 | 12688 |
0 | 16991 |
0 | 19584 |
0 | 24694 |
0 | 36646 |
0 | 40882 |
0 | 41599 |
1 | 14465 |
1 | 29032 |
1 | 39969 |
1 | 41094 |
1 | 69481 |
1 | 70919 |
1 | 75575 |
1 | 81102 |
1 | 87496 |
1 | 90603 |
......
~~~
优化后,只需要464毫秒返回10000个分组的TOP 10。
~~~
postgres=# explain (analyze,verbose,timing,costs,buffers) select * from f();
QUERY PLAN
---------------------------------------------------------------------------------------------------------------------
Function Scan on public.f (cost=0.25..10.25 rows=1000 width=12) (actual time=419.218..444.810 rows=100000 loops=1)
Output: c1, c2, c3
Function Call: f()
Buffers: shared hit=170407, temp read=221 written=220
Planning time: 0.037 ms
Execution time: 464.257 ms
(6 rows)
~~~
## 小结
1. 传统的方法使用窗口查询,输出多个每个分组的TOP 10,需要扫描所有的记录。效率较低。
2. 由于分组不是非常多,只有10000个,所以可以选择使用递归的方法,用上索引取TOP 10,速度非常快。
3. 目前PostgreSQL的递归语法不支持递归的启动表写在subquery里面,也不支持启动表在递归查询中使用order by,所以不能直接使用递归得出结果,目前需要套一层函数。