MariaDB · 新特性 · 窗口函数

最后更新于:2022-04-01 10:34:44

## 简介 窗口函数(Window Function)是 SQL:2013 标准中提出的,在后续标准版本的更新中也多次扩展,最新的版本是 SQL:2011 中的标准。 从某些方面来说,窗口函数与聚合函数(Aggregate Function)有些类似,他们都是对一系列的行进行聚合计算,然而不同于聚合函数的是,窗口函数的输出并不是被聚集到单独的一行。像 SUM, AVG, COUNT 这些聚合函数最终输出都是一行记录。 窗口函数可以通过计算每行周围窗口上的集合值来分析数据,例如:计算一定记录范围内、一定值域内、或者一段时间内的累计和以及移动平均值等等。之所以使用窗口这个术语,是因为对结果的处理使用了一个滑动的查询结果集范围。 大部分数据库,尤其是商业数据库都支持SQL标准中定义的部分窗口函数,但是MySQL一直没有支持这个特性。窗口函数在MySQL社区一直呼声很高,却一直没有被实现,直到 MairaDB 10.2 响应了客户的需求,实现了部分窗口函数,并且在持续完善中,我们就来简单介绍一下 MairaDB 的窗口函数。 ## 语法 MariaDB的窗口函数查询指定使用 OVER 关键字,默认情况下,用于计算的行集合(Window,窗口)是整个数据集,并且可以用 ORDER BY 子句排序。PARTITION BY 子句可以用于将窗口缩小到特定的集合内。 使用语法: ~~~ function (expression) OVER ( [ PARTITION BY expression_list ] [ ORDER BY order_list [ frame_clause ] ] ) function: A valid window function expression_list: expression | column_name [, expr_list ] order_list: expression | column_name [ ASC | DESC ] [, ... ] frame_clause: ~~~ 例如,给出下面的原始数据: ~~~ CREATE TABLE student (name CHAR(10), test CHAR(10), score TINYINT); INSERT INTO student VALUES ('Chun', 'SQL', 75), ('Chun', 'Tuning', 73), ('Esben', 'SQL', 43), ('Esben', 'Tuning', 31), ('Kaolin', 'SQL', 56), ('Kaolin', 'Tuning', 88), ('Tatiana', 'SQL', 87), ('Tatiana', 'Tuning', 83); ~~~ 下面两个查询可以分别返回按 test 和 name 分区处理的平均数: ~~~ SELECT name, test, score, AVG(score) OVER (PARTITION BY test) AS average_by_test FROM student; +---------+--------+-------+-----------------+ | name | test | score | average_by_test | +---------+--------+-------+-----------------+ | Chun | SQL | 75 | 65.2500 | | Chun | Tuning | 73 | 68.7500 | | Esben | SQL | 43 | 65.2500 | | Esben | Tuning | 31 | 68.7500 | | Kaolin | SQL | 56 | 65.2500 | | Kaolin | Tuning | 88 | 68.7500 | | Tatiana | SQL | 87 | 65.2500 | | Tatiana | Tuning | 83 | 68.7500 | +---------+--------+-------+-----------------+ SELECT name, test, score, AVG(score) OVER (PARTITION BY name) AS average_by_name FROM student; +---------+--------+-------+-----------------+ | name | test | score | average_by_name | +---------+--------+-------+-----------------+ | Chun | SQL | 75 | 74.0000 | | Chun | Tuning | 73 | 74.0000 | | Esben | SQL | 43 | 37.0000 | | Esben | Tuning | 31 | 37.0000 | | Kaolin | SQL | 56 | 72.0000 | | Kaolin | Tuning | 88 | 72.0000 | | Tatiana | SQL | 87 | 85.0000 | | Tatiana | Tuning | 83 | 85.0000 | +---------+--------+-------+-----------------+ ~~~ ## 用例 ### RANK 描述: RANK() 可以显示给定行的序号,从1开始,顺序以 ORDER BY 字段排序后的序列为准。 语法: ~~~ RANK() OVER ( [ PARTITION BY partition_expression ] [ ORDER BY order_list ] ) ~~~ 例子 ~~~ CREATE TABLE student(course VARCHAR(10), mark int, name varchar(10)); INSERT INTO student VALUES ('Maths', 60, 'Thulile'), ('Maths', 60, 'Pritha'), ('Maths', 70, 'Voitto'), ('Biology', 60, 'Bilal'), ('Biology', 70, 'Roger'); SELECT RANK() OVER (PARTITION BY course ORDER BY mark) AS rank, DENSE_RANK() OVER (PARTITION BY course ORDER BY mark) AS dense_rank, ROW_NUMBER() OVER (PARTITION BY course ORDER BY mark) AS row_num, course, mark, name from student; +------+------------+---------+---------+------+---------+ | rank | dense_rank | row_num | course | mark | name | +------+------------+---------+---------+------+---------+ | 1 | 1 | 1 | Maths | 60 | Thulile | | 1 | 1 | 2 | Maths | 60 | Pritha | | 3 | 2 | 3 | Maths | 70 | Voitto | | 1 | 1 | 1 | Biology | 60 | Bilal | | 2 | 2 | 2 | Biology | 70 | Roger | +------+------------+---------+---------+------+---------+ ~~~ ### CUME_DIST 描述: CUME_DIST() 可以返回一行数据的累积分布(cumulative distribution)。计算公式如下 `(number of rows <= current row) / (total rows)` 语法: ~~~ CUME_DIST() OVER ( [ PARTITION BY partition_expression ] [ ORDER BY order_list ] ) ~~~ 例子: ~~~ create table t1 ( pk int primary key, a int, b int ); insert into t1 values ( 1 , 0, 10), ( 2 , 0, 10), ( 3 , 1, 10), ( 4 , 1, 10), ( 8 , 2, 10), ( 5 , 2, 20), ( 6 , 2, 20), ( 7 , 2, 20), ( 9 , 4, 20), (10 , 4, 20); select pk, a, b, rank() over (order by a), percent_rank() over (order by a), cume_dist() over (order by a) from t1; +----+------+------+--------------------------+----------------------------------+-------------------------------+ | pk | a | b | rank() over (order by a) | percent_rank() over (order by a) | cume_dist() over (order by a) | +----+------+------+--------------------------+----------------------------------+-------------------------------+ | 1 | 0 | 10 | 1 | 0.0000000000 | 0.2000000000 | | 2 | 0 | 10 | 1 | 0.0000000000 | 0.2000000000 | | 3 | 1 | 10 | 3 | 0.2222222222 | 0.4000000000 | | 4 | 1 | 10 | 3 | 0.2222222222 | 0.4000000000 | | 5 | 2 | 20 | 5 | 0.4444444444 | 0.8000000000 | | 6 | 2 | 20 | 5 | 0.4444444444 | 0.8000000000 | | 7 | 2 | 20 | 5 | 0.4444444444 | 0.8000000000 | | 8 | 2 | 10 | 5 | 0.4444444444 | 0.8000000000 | | 9 | 4 | 20 | 9 | 0.8888888889 | 1.0000000000 | | 10 | 4 | 20 | 9 | 0.8888888889 | 1.0000000000 | +----+------+------+--------------------------+----------------------------------+-------------------------------+ select pk, a, b, percent_rank() over (order by pk), cume_dist() over (order by pk) from t1 order by pk; +----+------+------+-----------------------------------+--------------------------------+ | pk | a | b | percent_rank() over (order by pk) | cume_dist() over (order by pk) | +----+------+------+-----------------------------------+--------------------------------+ | 1 | 0 | 10 | 0.0000000000 | 0.1000000000 | | 2 | 0 | 10 | 0.1111111111 | 0.2000000000 | | 3 | 1 | 10 | 0.2222222222 | 0.3000000000 | | 4 | 1 | 10 | 0.3333333333 | 0.4000000000 | | 5 | 2 | 20 | 0.4444444444 | 0.5000000000 | | 6 | 2 | 20 | 0.5555555556 | 0.6000000000 | | 7 | 2 | 20 | 0.6666666667 | 0.7000000000 | | 8 | 2 | 10 | 0.7777777778 | 0.8000000000 | | 9 | 4 | 20 | 0.8888888889 | 0.9000000000 | | 10 | 4 | 20 | 1.0000000000 | 1.0000000000 | +----+------+------+-----------------------------------+--------------------------------+ select pk, a, b, percent_rank() over (partition by a order by a), cume_dist() over (partition by a order by a) from t1; +----+------+------+-------------------------------------------------+----------------------------------------------+ | pk | a | b | percent_rank() over (partition by a order by a) | cume_dist() over (partition by a order by a) | +----+------+------+-------------------------------------------------+----------------------------------------------+ | 1 | 0 | 10 | 0.0000000000 | 1.0000000000 | | 2 | 0 | 10 | 0.0000000000 | 1.0000000000 | | 3 | 1 | 10 | 0.0000000000 | 1.0000000000 | | 4 | 1 | 10 | 0.0000000000 | 1.0000000000 | | 5 | 2 | 20 | 0.0000000000 | 1.0000000000 | | 6 | 2 | 20 | 0.0000000000 | 1.0000000000 | | 7 | 2 | 20 | 0.0000000000 | 1.0000000000 | | 8 | 2 | 10 | 0.0000000000 | 1.0000000000 | | 9 | 4 | 20 | 0.0000000000 | 1.0000000000 | | 10 | 4 | 20 | 0.0000000000 | 1.0000000000 | +----+------+------+-------------------------------------------------+----------------------------------------------+ ~~~ ## 总结 * 支持 ROWS 和 RANGE类型的Frame * 各种类型的Frame界定都支持,包括 RANGE PRECEDING | FOLLOWING n个Frame范围(不同于PostgreSQL 和 SQL Server) * RANGE类型的Frame 还不支持 DATE[TIME] 数据类型和四则运算,但MDEV-9727正在进行开发 * 还不支持 GROUPS类型的Frame(但好像还没有流行的数据库有支持这玩意的) * 不支持禁用Frame(好像也没其他数据库支持) * 不支持显式的 NULLS FIRST 和 NULLS LAST * 不支持窗口函数嵌套处理(就是VALUE_OF(expr AT row_marker [, default_value) 这种语法) * 下面这些窗口函数都支持: * “Streamable(流式)” 窗口函数:ROW_NUMBER, RANK, DENSE_RANK * 一旦分区中的行数知道后,就可以流式处理的窗口函数:PERCENT_RANK, CUME_DIST, NTILE * 目前支持窗口函数的聚合函数有: COUNT, SUM, AVG, BIT_OR, BIT_AND, BIT_XOR * 包含 DISTINCT 子句的聚合函数不支持作为窗口函数 大家可以在[这里](https://mariadb.com/kb/en/mariadb/window-functions/)查看具体支持哪些函数以及未来新增了哪些函数
';