决策树模型(固定模型)

最后更新于:2022-04-01 21:54:49

# 决策树模型(固定模型) > 来源:https://uqer.io/community/share/568dce2d228e5b18e2ba296e 楼主上学时学的是机器学习,现在在BAT做数据挖掘,一直对将机器学习的知识应用到金融领域比较感兴趣。 最近发现了优矿这个平台之后,有点着迷了,通过看大家的策略,也学到些知识。 因为楼主对金融投资认识不多,所以写的策略比较简单粗暴,希望向大家多多学习~ 策略: 1、不预测具体股价,只预测次日收盘价相比今日是涨是跌; 2、如果预测为涨,则全部买入或持有;如果预测为跌,则全部卖出。 方法: 基于某只股票的历史数据,采用机器学习的方法,挖掘其中规律,预测该只股票次日收盘价是涨还是跌 ```py import numpy as np from CAL.PyCAL import * from sklearn.cross_validation import train_test_split from sklearn.externals import joblib import pandas as pd cal = Calendar('China.SSE') # 第一步:设置基本参数 start = '2015-01-01' end = '2015-11-01' capital_base = 1000000 refresh_rate = 1 benchmark = 'HS300' ##HS300 freq = 'd' #601872.XSHG HS300 # 第二步:选择主题,设置股票池 universe = ['601872.XSHG', ] ##训练模型 def model_train(begin_date,end_date): data1=DataAPI.MktEqudGet(secID=u"601872.XSHG",beginDate=begin_date,endDate=end_date,field=['tradeDate','highestPrice','lowestPrice','openPrice','closePrice','turnoverVol','turnoverRate'],pandas="1") data2=DataAPI.MktStockFactorsDateRangeGet(secID=u"601872.XSHG",beginDate=begin_date,endDate=end_date,field=['tradeDate','DAVOL5','EMA5','EMA10','MA5','MA20','RSI','VOL5','VOL10','MACD'],pandas="1") df_data=pd.merge(data1,data2,on='tradeDate') tmp=[] for i in range(len(df_data.values)): mark_1=0 for j in range(len(df_data.values[i])): if str(df_data.values[i][j])=='nan': mark_1=1 if mark_1==0: a=list(df_data.values[i]) a.append(df_data.values[i][4]-df_data.values[i][10]) a.append(df_data.values[i][4]-df_data.values[i][11]) tmp.append(a) data=tmp print len(data) x=[] y=[] for i in range(len(data)-1): if data[i][4]0 and stock not in account.valid_secpos: p = account.referencePrice[stock] order(stock,int(c / p)) if y_predict==0 and stock in account.valid_secpos: order_to(stock,0) #print today,x_predict[3],y_predict ``` ![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-07-30_579cbdac2fb5a.jpg) ``` 713 0.580056179775 0.334384858044 0.445224719101 ``` This is an empty markdown cell
';