3.2 分析师推荐 • 分析师的金手指?

最后更新于:2022-04-01 21:52:26

# 3.2 分析师推荐 • 分析师的金手指? > 在我们的观点中,分析师对股票的评级以及EPS的估计,更多的是对该之股票过去一段时间表现的总结,并没有明确的预测未来的能力。鉴于分析师估计的延迟特点,在我们的策略中我们将分析师估计作为反向指标使用。粗略的说,在固定的期限内,我们买入分析师调低预期的股票,卖出分析师调高预期的股票。 本策略的参数如下: + 起始日期: 2011年1月1日 + 结束日期: 2015年3月19日 + 股票池: 沪深300 + 业绩基准: 沪深300 + 起始资金: 100000元 + 调仓周期: 3个月 本策略使用的主要数据API有: 这里我们使用了来自于第三方朝阳永续的数据API(需要在数据商城中购买) + `CGRDReportGGGet` 获取朝阳永续分析师一致评级 + `CESTReportGGGet` 获取朝阳永续分析师一致预期 [朝阳永续分析师分析数据相关链接](https://api.wmcloud.com/docs/pages/viewpage.action?pageId=2392750) ```py import pandas as pd start = datetime(2011,1, 1) # 回测起始时间 end = datetime(2015, 3, 19) # 回测结束时间 benchmark = 'HS300' # 策略参考标准 universe = set_universe('HS300') # 股票池 #universe = ['600000.XSHG', '000001.XSHE'] capital_base = 100000 # 起始资金 commission = Commission(0.0,0.0) longest_history = 1 def CGRDwithBatch(universe, batch, startDate, endDate): res = pd.DataFrame() totalLength = len(universe) count = 0 while totalLength > batch: tmp = DataAPI.GG.CGRDReportGGGet(secID = universe[count * batch : (count + 1) * batch], BeginPubDate = startDate, EndPubDate = endDate) count += 1 totalLength -= batch res = res.append(tmp) tmp = DataAPI.GG.CGRDReportGGGet(secID = universe[(count * batch):], BeginPubDate = startDate, EndPubDate = endDate) res = res.append(tmp) return res def CESTwithBatch(universe, batch, startDate, endDate): res = pd.DataFrame() totalLength = len(universe) count = 0 while totalLength > batch: tmp = DataAPI.GG.CESTReportGGGet(secID = universe[count * batch : (count + 1) * batch], BeginPubDate = startDate, EndPubDate = endDate) count += 1 totalLength -= batch res = res.append(tmp) tmp = DataAPI.GG.CGRDReportGGGet(secID = universe[(count * batch):], BeginPubDate = startDate, EndPubDate = endDate) res = res.append(tmp) return res def MktEqudwithBatch(universe, batch, startDate, endDate): res = pd.DataFrame() totalLength = len(universe) count = 0 while totalLength > batch: tmp = DataAPI.MktEqudGet(secID = universe[count * batch : (count + 1) * batch], beginDate = startDate, endDate = endDate) count += 1 totalLength -= batch res = res.append(tmp) tmp = DataAPI.MktEqudGet(secID = universe[count * batch : (count + 1) * batch], beginDate = startDate, endDate = endDate) res = res.append(tmp) return res def regressionTesting(universe, startDate, endDate): import statsmodels.api as sm res1 = CGRDwithBatch(universe, 50, startDate, endDate).sort('publishDate') res2 = CESTwithBatch(universe, 50, startDate, endDate).sort('publishDate') res1 = res1[res1.RatingType == 1] res2 = res2[res2.PnetprofitType == 1] # got expRating change lastRating = res1.groupby('secID').last() firstRating = res1.groupby('secID').first() lastRating['previousRating'] = firstRating.Rating lastRating['chg_exp'] = lastRating.Rating / firstRating.Rating - 1.0 lowerP = lastRating['chg_exp'].quantile(0.05) highP = lastRating['chg_exp'].quantile(0.95) lastRating = lastRating[(lastRating['chg_exp']>lowerP) & (lastRating['chg_exp']lowerP) & (lastEps['chg_eps'] ';