【50ETF期权】 5. 日内即时监控 Greeks 和隐含波动率微笑

最后更新于:2022-04-01 21:58:54

# 【50ETF期权】 5. 日内即时监控 Greeks 和隐含波动率微笑 > 来源:https://uqer.io/community/share/5615d10ff9f06c4ca72fb5be 和上一篇类似,计算上证50ETF期权的隐含波动率微笑,但这里通过DataAPI提供的高频数据,在交易时间实时监控Greeks 和隐含波动率变化! ```py from CAL.PyCAL import * import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import rc rc('mathtext', default='regular') import seaborn as sns sns.set_style('white') import math from scipy import interpolate from scipy.stats import mstats from pandas import Series, DataFrame, concat import time from matplotlib import dates ``` 上海银行间同业拆借利率 SHIBOR,用来作为无风险利率参考 ```py ## 银行间质押式回购利率 def getHistDayInterestRateInterbankRepo(date): cal = Calendar('China.SSE') period = Period('-10B') begin = cal.advanceDate(date, period) begin_str = begin.toISO().replace('-', '') date_str = date.toISO().replace('-', '') # 以下的indicID分别对应的银行间质押式回购利率周期为: # 1D, 7D, 14D, 21D, 1M, 3M, 4M, 6M, 9M, 1Y indicID = [u"M120000067", u"M120000068", u"M120000069", u"M120000070", u"M120000071", u"M120000072", u"M120000073", u"M120000074", u"M120000075", u"M120000076"] period = np.asarray([1.0, 7.0, 14.0, 21.0, 30.0, 90.0, 120.0, 180.0, 270.0, 360.0]) / 360.0 period_matrix = pd.DataFrame(index=indicID, data=period, columns=['period']) field = u"indicID,indicName,publishTime,periodDate,dataValue,unit" interbank_repo = DataAPI.ChinaDataInterestRateInterbankRepoGet(indicID=indicID,beginDate=begin_str,endDate=date_str,field=field,pandas="1") interbank_repo = interbank_repo.groupby('indicID').first() interbank_repo = concat([interbank_repo, period_matrix], axis=1, join='inner').sort_index() return interbank_repo ## 银行间同业拆借利率 def getHistDaySHIBOR(date): cal = Calendar('China.SSE') period = Period('-10B') begin = cal.advanceDate(date, period) begin_str = begin.toISO().replace('-', '') date_str = date.toISO().replace('-', '') # 以下的indicID分别对应的SHIBOR周期为: # 1D, 7D, 14D, 1M, 3M, 6M, 9M, 1Y indicID = [u"M120000057", u"M120000058", u"M120000059", u"M120000060", u"M120000061", u"M120000062", u"M120000063", u"M120000064"] period = np.asarray([1.0, 7.0, 14.0, 30.0, 90.0, 180.0, 270.0, 360.0]) / 360.0 period_matrix = pd.DataFrame(index=indicID, data=period, columns=['period']) field = u"indicID,indicName,publishTime,periodDate,dataValue,unit" interest_shibor = DataAPI.ChinaDataInterestRateSHIBORGet(indicID=indicID,beginDate=begin_str,endDate=date_str,field=field,pandas="1") interest_shibor = interest_shibor.groupby('indicID').first() interest_shibor = concat([interest_shibor, period_matrix], axis=1, join='inner').sort_index() return interest_shibor ## 插值得到给定的周期的无风险利率 def periodsSplineRiskFreeInterestRate(date, periods): # 此处使用SHIBOR来插值 init_shibor = getHistDaySHIBOR(date) shibor = {} min_period = min(init_shibor.period.values) min_period = 10.0/360.0 max_period = max(init_shibor.period.values) for p in periods.keys(): tmp = periods[p] if periods[p] > max_period: tmp = max_period * 0.99999 elif periods[p] < min_period: tmp = min_period * 1.00001 sh = interpolate.spline(init_shibor.period.values, init_shibor.dataValue.values, [tmp], order=3) shibor[p] = sh[0]/100.0 return shibor ``` ## 1. Greeks 和 隐含波动率 本文中计算的Greeks包括: + `delta` 期权价格关于标的价格的一阶导数 + `gamma` 期权价格关于标的价格的二阶导数 + `rho` 期权价格关于无风险利率的一阶导数 + `theta` 期权价格关于到期时间的一阶导数 + `vega` 期权价格关于波动率的一阶导数 注意: + 计算隐含波动率,我们采用Black-Scholes-Merton模型,此模型在平台Python包CAL中已有实现 + 无风险利率使用SHIBOR + 期权的时间价值为负时(此种情况在50ETF期权里时有发生),没法通过BSM模型计算隐含波动率,故此时将期权隐含波动率设为0.0,实际上,此时的隐含波动率和各风险指标并无实际参考价值 + 此处计算即时隐含波动率和Greeks时候,我们使用买一和卖一的中间价作为期权价格 ```py ## 使用DataAPI.OptGet, DataAPI.MktOptionTickRTSnapshotGet 拿到计算所需数据 def getOptTickSnapshot(opt_var_sec, date): date_str = date.toISO().replace('-', '') #使用DataAPI.OptGet,拿到已退市和上市的所有期权的基本信息 info_fields = [u'optID', u'varSecID', u'varShortName', u'varTicker', u'varExchangeCD', u'varType', u'contractType', u'strikePrice', u'contMultNum', u'contractStatus', u'listDate', u'expYear', u'expMonth', u'expDate', u'lastTradeDate', u'exerDate', u'deliDate', u'delistDate'] opt_info = DataAPI.OptGet(optID='', contractStatus=[u"DE",u"L"], field=info_fields, pandas="1") #使用DataAPI.MktOptionTickRTSnapshotGet,拿到期权实时成交数据 date_str = date.toISO().replace('-', '') fields_mkt = ['instrumentID', u'optionId', u'dataDate', u'lastPrice', u'preSettlePrice', u'bidBook_price1', u'bidBook_volume1', u'askBook_price1', u'askBook_volume1'] opt_mkt = DataAPI.MktOptionTickRTSnapshotGet(optionId=u"", field='', pandas="1") opt_mkt = opt_mkt[opt_mkt.dataDate == date.toISO()] opt_mkt['optID'] = map(int, opt_mkt['optionId']) opt_mkt[u"price"] = (opt_mkt['bidBook_price1'] + opt_mkt['askBook_price1'])/2.0 opt_info = opt_info.set_index(u"optID") opt_mkt = opt_mkt.set_index(u"optID") opt = concat([opt_info, opt_mkt], axis=1, join='inner').sort_index() return opt ## 分析期权即时交易信息,得到隐含波动率微笑和期权风险指标 def getOptAnalysisSnapshot(opt_var_sec): date = Date.todaysDate() opt = getOptTickSnapshot(opt_var_sec, date) #使用DataAPI.MktTickRTSnapshotGet 拿到期权标的的即时行情 date_str = date.toISO().replace('-', '') opt_var_mkt = DataAPI.MktTickRTSnapshotGet(securityID=opt_var_sec,field=u"lastPrice",pandas="1") # 计算shibor exp_dates_str = opt.expDate.unique() periods = {} for date_str in exp_dates_str: exp_date = Date.parseISO(date_str) periods[exp_date] = (exp_date - date)/360.0 shibor = periodsSplineRiskFreeInterestRate(date, periods) settle = opt.price.values # 期权 settle price close = opt.price.values # 期权 close price strike = opt.strikePrice.values # 期权 strike price option_type = opt.contractType.values # 期权类型 exp_date_str = opt.expDate.values # 期权行权日期 eval_date_str = opt.dataDate.values # 期权交易日期 mat_dates = [] eval_dates = [] spot = [] for epd, evd in zip(exp_date_str, eval_date_str): mat_dates.append(Date.parseISO(epd)) eval_dates.append(Date.parseISO(evd)) spot.append(opt_var_mkt.lastPrice[0]) time_to_maturity = [float(mat - eva + 1.0)/365.0 for (mat, eva) in zip(mat_dates, eval_dates)] risk_free = [] # 无风险利率 for s, mat, time in zip(spot, mat_dates, time_to_maturity): #rf = math.log(forward_price[mat] / s) / time rf = shibor[mat] risk_free.append(rf) opt_types = [] # 期权类型 for t in option_type: if t == 'CO': opt_types.append(1) else: opt_types.append(-1) # 使用通联CAL包中 BSMImpliedVolatity 计算隐含波动率 calculated_vol = BSMImpliedVolatity(opt_types, strike, spot, risk_free, 0.0, time_to_maturity, settle) calculated_vol = calculated_vol.fillna(0.0) # 使用通联CAL包中 BSMPrice 计算期权风险指标 greeks = BSMPrice(opt_types, strike, spot, risk_free, 0.0, calculated_vol.vol.values, time_to_maturity) # vega、rho、theta 的计量单位参照上交所的数据,以求统一对比 greeks.vega = greeks.vega #/ 100.0 greeks.rho = greeks.rho #/ 100.0 greeks.theta = greeks.theta #* 365.0 / 252.0 #/ 365.0 opt['strike'] = strike opt['optType'] = option_type opt['expDate'] = exp_date_str opt['spotPrice'] = spot opt['riskFree'] = risk_free opt['timeToMaturity'] = np.around(time_to_maturity, decimals=4) opt['settle'] = np.around(greeks.price.values.astype(np.double), decimals=4) opt['iv'] = np.around(calculated_vol.vol.values.astype(np.double), decimals=4) opt['delta'] = np.around(greeks.delta.values.astype(np.double), decimals=4) opt['vega'] = np.around(greeks.vega.values.astype(np.double), decimals=4) opt['gamma'] = np.around(greeks.gamma.values.astype(np.double), decimals=4) opt['theta'] = np.around(greeks.theta.values.astype(np.double), decimals=4) opt['rho'] = np.around(greeks.rho.values.astype(np.double), decimals=4) fields = [u'instrumentID', u'contractType', u'strikePrice', u'expDate', u'dataDate', u'dataTime', u'price', 'spotPrice', u'iv', u'delta', u'vega', u'gamma', u'theta', u'rho'] opt = opt[fields].reset_index().set_index('instrumentID').sort_index() #opt['iv'] = opt.iv.replace(to_replace=0.0, value=np.nan) return opt # 期权分析数据整理 def getOptSnapshotGreeksIV(): # Uqer 计算期权的风险数据 opt_var_sec = u"510050.XSHG" # 期权标的 opt = getOptAnalysisSnapshot(opt_var_sec) # 整理数据部分 opt.index = [index[-10:] for index in opt.index] opt = opt[['spotPrice', 'contractType','strikePrice','expDate','price','iv','delta','theta','gamma','vega','rho']] opt_call = opt[opt.contractType=='CO'] opt_put = opt[opt.contractType=='PO'] opt_call.columns = pd.MultiIndex.from_tuples([('Call', c) for c in opt_call.columns]) opt_call[('Call-Put', 'spotPrice')] = opt_call[('Call', 'spotPrice')] opt_call[('Call-Put', 'strikePrice')] = opt_call[('Call', 'strikePrice')] opt_put.columns = pd.MultiIndex.from_tuples([('Put', c) for c in opt_put.columns]) opt = concat([opt_call, opt_put], axis=1, join='inner').sort_index() opt = opt.set_index(('Call','expDate')).sort_index() opt = opt.drop([('Call','contractType'), ('Call','strikePrice'), ('Call','spotPrice')], axis=1) opt = opt.drop([('Put','expDate'), ('Put','contractType'), ('Put','strikePrice'), ('Put','spotPrice')], axis=1) opt.index.name = 'expDate' ## 以上得到完整的历史某日数据,格式简洁明了 return opt ``` 即时风险数据计算,其中的`price`就是买一、卖一价格的平均 ```py DataAPI.MktTickRTSnapshotGet(securityID="510050.XSHG",field=u"",pandas="1").columns Index([u'exchangeCD', u'ticker', u'timestamp', u'AggQty', u'amplitude', u'change', u'changePct', u'currencyCD', u'dataDate', u'dataTime', u'deal', u'extraLargeOrderValue', u'highPrice', u'IEP', u'largeOrderValue', u'lastPrice', u'localTimestamp', u'lowPrice', u'mediumOrderValue', u'negMarketValue', u'nominalPrice', u'openPrice', u'orderType', u'prevClosePrice', u'shortNM', u'smallOrderValue', u'staticPE', u'suspension', u'totalOrderValue', u'tradSessionID', u'tradSessionStatus', u'tradSessionSubID', u'tradStatus', u'tradType', u'turnoverRate', u'utcOffset', u'value', u'volume', u'VWAP', u'Yield', u'bidBook_price1', u'bidBook_volume1', u'bidBook_price2', u'bidBook_volume2', u'bidBook_price3', u'bidBook_volume3', u'bidBook_price4', u'bidBook_volume4', u'bidBook_price5', u'bidBook_volume5', u'askBook_price1', u'askBook_volume1', u'askBook_price2', u'askBook_volume2', u'askBook_price3', u'askBook_volume3', u'askBook_price4', u'askBook_volume4', u'askBook_price5', u'askBook_volume5'], dtype='object') ``` ```py opt = getOptSnapshotGreeksIV() opt.head(20) ``` | | Call | Call-Put | Put | | --- | --- | | price | iv | delta | theta | gamma | vega | rho | spotPrice | strikePrice | price | iv | delta | theta | gamma | vega | rho | | expDate | | | | | | | | | | | | | | | | | | 2015-10-28 | 0.35250 | 0.0000 | NaN | NaN | NaN | NaN | NaN | 2.215 | 1.85 | 0.00265 | 0.4139 | -0.0300 | -0.1281 | 0.3097 | 0.0362 | -0.0040 | | 2015-10-28 | 0.30390 | 0.0000 | NaN | NaN | NaN | NaN | NaN | 2.215 | 1.90 | 0.00490 | 0.4093 | -0.0517 | -0.1965 | 0.4868 | 0.0562 | -0.0069 | | 2015-10-28 | 0.25710 | 0.0000 | NaN | NaN | NaN | NaN | NaN | 2.215 | 1.95 | 0.00810 | 0.3985 | -0.0810 | -0.2706 | 0.7086 | 0.0797 | -0.0108 | | 2015-10-28 | 0.20990 | 0.0000 | NaN | NaN | NaN | NaN | NaN | 2.215 | 2.00 | 0.01130 | 0.3716 | -0.1133 | -0.3219 | 0.9729 | 0.1021 | -0.0151 | | 2015-10-28 | 0.16690 | 0.0000 | NaN | NaN | NaN | NaN | NaN | 2.215 | 2.05 | 0.01710 | 0.3539 | -0.1649 | -0.3942 | 1.3199 | 0.1318 | -0.0220 | | 2015-10-28 | 0.12500 | 0.1998 | 0.8793 | -0.2390 | 1.8916 | 0.1067 | 0.1049 | 2.215 | 2.10 | 0.02605 | 0.3391 | -0.2367 | -0.4668 | 1.7125 | 0.1639 | -0.0317 | | 2015-10-28 | 0.09155 | 0.2392 | 0.7182 | -0.4171 | 2.6574 | 0.1794 | 0.0863 | 2.215 | 2.15 | 0.03965 | 0.3287 | -0.3305 | -0.5273 | 2.0746 | 0.1925 | -0.0444 | | 2015-10-28 | 0.06285 | 0.2510 | 0.5679 | -0.4908 | 2.9485 | 0.2089 | 0.0688 | 2.215 | 2.20 | 0.06060 | 0.3297 | -0.4416 | -0.5701 | 2.2532 | 0.2097 | -0.0598 | | 2015-10-28 | 0.04160 | 0.2615 | 0.4241 | -0.4994 | 2.8189 | 0.2081 | 0.0516 | 2.215 | 2.25 | 0.09095 | 0.3483 | -0.5500 | -0.5979 | 2.1391 | 0.2103 | -0.0753 | | 2015-10-28 | 0.02795 | 0.2780 | 0.3064 | -0.4697 | 2.3766 | 0.1865 | 0.0374 | 2.215 | 2.30 | 0.12510 | 0.3612 | -0.6450 | -0.5751 | 1.9401 | 0.1978 | -0.0894 | | 2015-10-28 | 0.01655 | 0.2793 | 0.2049 | -0.3791 | 1.9141 | 0.1509 | 0.0252 | 2.215 | 2.35 | 0.16490 | 0.3831 | -0.7188 | -0.5449 | 1.6571 | 0.1792 | -0.1011 | | 2015-11-25 | 0.17915 | 0.1663 | 0.9149 | -0.1371 | 1.1545 | 0.1264 | 0.2480 | 2.215 | 2.05 | 0.04815 | 0.3692 | -0.2509 | -0.3361 | 1.0627 | 0.2584 | -0.0811 | | 2015-11-25 | 0.14805 | 0.2196 | 0.7751 | -0.2490 | 1.6819 | 0.2433 | 0.2106 | 2.215 | 2.10 | 0.06685 | 0.3775 | -0.3136 | -0.3803 | 1.1574 | 0.2878 | -0.1022 | | 2015-11-25 | 0.12025 | 0.2438 | 0.6649 | -0.3116 | 1.8413 | 0.2957 | 0.1816 | 2.215 | 2.15 | 0.08985 | 0.3880 | -0.3780 | -0.4163 | 1.2072 | 0.3085 | -0.1245 | | 2015-11-25 | 0.09455 | 0.2541 | 0.5657 | -0.3391 | 1.9085 | 0.3194 | 0.1555 | 2.215 | 2.20 | 0.11335 | 0.3891 | -0.4408 | -0.4293 | 1.2495 | 0.3202 | -0.1463 | | 2015-11-25 | 0.07355 | 0.2631 | 0.4721 | -0.3475 | 1.8635 | 0.3230 | 0.1305 | 2.215 | 2.25 | 0.14205 | 0.3964 | -0.5023 | -0.4380 | 1.2402 | 0.3238 | -0.1684 | | 2015-11-25 | 0.05525 | 0.2667 | 0.3849 | -0.3335 | 1.7659 | 0.3102 | 0.1070 | 2.215 | 2.30 | 0.17425 | 0.4052 | -0.5598 | -0.4381 | 1.1993 | 0.3201 | -0.1899 | | 2015-12-23 | 0.38610 | 0.0000 | NaN | NaN | NaN | NaN | NaN | 2.215 | 1.80 | 0.02025 | 0.3907 | -0.0997 | -0.1573 | 0.4406 | 0.1782 | -0.0509 | | 2015-12-23 | 0.34710 | 0.0000 | NaN | NaN | NaN | NaN | NaN | 2.215 | 1.85 | 0.02735 | 0.3885 | -0.1280 | -0.1862 | 0.5295 | 0.2129 | -0.0656 | | 2015-12-23 | 0.30415 | 0.0000 | NaN | NaN | NaN | NaN | NaN | 2.215 | 1.90 | 0.03625 | 0.3865 | -0.1610 | -0.2152 | 0.6212 | 0.2485 | -0.0829 | ## 2. 隐含波动率微笑 利用上一小节的代码,给出隐含波动率微笑结构 隐含波动率微笑 ```py # 做图展示某一天的隐含波动率微笑 def plotSnapshotSmileVolatility(): # Uqer 计算期权的风险数据 opt = getOptSnapshotGreeksIV() # 下面展示波动率微笑 exp_dates = np.sort(opt.index.unique()) ## ---------------------------------------------- fig = plt.figure(figsize=(10,8)) fig.set_tight_layout(True) for i in range(exp_dates.shape[0]): date = exp_dates[i] ax = fig.add_subplot(2,2,i+1) opt_date = opt[opt.index==date].set_index(('Call-Put', 'strikePrice')) opt_date.index.name = 'strikePrice' ax.plot(opt_date.index, opt_date[('Call', 'iv')], '-o') ax.plot(opt_date.index, opt_date[('Put', 'iv')], '-s') ax.legend(['call', 'put'], loc=0) ax.grid() ax.set_xlabel(u"strikePrice") ax.set_ylabel(r"Implied Volatility") plt.title(exp_dates[i]) ``` ```py plotSnapshotSmileVolatility() ``` ![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-07-30_579cbdbc03be3.png) 行权价和行权日期两个方向上的隐含波动率微笑 ```py from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm # 做图展示某一天的隐含波动率结构 def plotSnapshotSmileVolatilitySurface(): # Uqer 计算期权的风险数据 date = Date.todaysDate() opt = getOptSnapshotGreeksIV() # 下面展示波动率结构 exp_dates = np.sort(opt.index.unique()) strikes = np.sort(opt[('Call-Put', 'strikePrice')].unique()) risk_mt = {'Call': pd.DataFrame(index=strikes), 'Put': pd.DataFrame(index=strikes) } # 将数据整理成Call和Put分开来,分别的结构为: # 行为行权价,列为剩余到期天数(以自然天数计算) for epd in exp_dates: exp_days = Date.parseISO(epd) - date opt_date = opt[opt.index==epd].set_index(('Call-Put', 'strikePrice')) opt_date.index.name = 'strikePrice' for cp in risk_mt.keys(): risk_mt[cp][exp_days] = opt_date[(cp, 'iv')] for cp in risk_mt.keys(): for strike in risk_mt[cp].index: if np.sum(np.isnan(risk_mt[cp].ix[strike])) > 0: risk_mt[cp] = risk_mt[cp].drop(strike) # Call和Put分开显示,行index为行权价,列index为剩余到期天数 #print risk_mt # 画图 for cp in ['Call', 'Put']: opt = risk_mt[cp] x = [] y = [] z = [] for xx in opt.index: for yy in opt.columns: x.append(xx) y.append(yy) z.append(opt[yy][xx]) fig = plt.figure(figsize=(10,8)) fig.suptitle(cp) ax = fig.gca(projection='3d') ax.plot_trisurf(x, y, z, cmap=cm.jet, linewidth=0.2) return risk_mt ``` 画出某一天的波动率微笑曲面结构 ```py opt = plotSnapshotSmileVolatilitySurface() opt # Call和Put分开显示,行index为行权价,列index为剩余到期天数 {'Call': 20 48 76 167 2.05 0.0000 0.1663 0.2027 0.2263 2.10 0.1998 0.2196 0.2283 0.2430 2.15 0.2392 0.2438 0.2446 0.2502 2.20 0.2510 0.2541 0.2570 0.2579 2.25 0.2615 0.2631 0.2646 0.2639 2.30 0.2780 0.2667 0.2763 0.2673, 'Put': 20 48 76 167 2.05 0.3535 0.3692 0.3965 0.3965 2.10 0.3391 0.3775 0.4002 0.4002 2.15 0.3287 0.3877 0.4116 0.4030 2.20 0.3297 0.3891 0.4185 0.4069 2.25 0.3483 0.3964 0.4228 0.4084 2.30 0.3612 0.4052 0.4287 0.4149} ``` ![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-07-30_579cbdbc1ff3d.png) ![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-07-30_579cbdbc433f6.png) 波动率曲面结构图中: + 上图为Call,下图为Put,此处没有进行任何插值处理,略显粗糙 + Put的隐含波动率明显大于Call + 期限结构来说,波动率呈现远高近低的特征 + 切记:所有的隐含波动率为0代表着期权的时间价值为负,此时的风险数据实际上并无多大参考意义!!
';