12.1 order book 分析 · 基于高频 limit order book 数据的短程价格方向预测—— via multi-class SVM
最后更新于:2022-04-01 21:57:57
# 12.1 order book 分析 · 基于高频 limit order book 数据的短程价格方向预测—— via multi-class SVM
> 来源:https://uqer.io/community/share/5660665bf9f06c6c8a91b1a0
## 摘要:
下面的内容是基于文献[Modeling high-frequency limit order book dynamics with support vector machines](https://raw.github.com/ezhulenev/scala-openbook/master/assets/Modeling-high-frequency-limit-order-book-dynamics-with-support-vector-machines.pdf)的框架写的,由于高频数据粗粒度依然有限,只能实现了部分内容。若需要完整理解这个问题以及实现方法,请阅读上述的文献。下面我会简单介绍一下整个框架的内容。
## 模型构造
作者使用Message book以及Order book作为数据来源,通联没有前者的数据,因此后面的部分只涉及到level1买卖5档的order book数据作为模型的输入。这里我只实现了通过order book数据预测mid price的方向,包括向上,向下,以及不变。对于bid-ask spread crossing的方法相似,我暂时就不放上来了。
## 特征选择
对order book数据做处理后,可以提取到我们需要的特征向量。总的特征分为三类:基本、时间不敏感和时间敏感三类,这里我们能从数据中获得全部的基本和时间不敏感特征,以及部分时间敏感特征,具体的见图片,或者进一步阅读文献。
![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-07-31_579d7a02bf38b.png)
```py
#importing package
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from sklearn import svm
from CAL.PyCAL import *
#global parameter for model
date = '20151130'
securityID = '000002.XSHE' #万科A
trainSetNum = 900
testSetNum = 600
#loading LOB data
dataSet = DataAPI.MktTicksHistOneDayGet(securityID=securityID, date=date,pandas='1')
#Features representation
##Basic Set
###V1: price and volume (10 levels)
featV1 = dataSet[['askPrice1','askPrice2','askPrice3','askPrice4','askPrice5','askVolume1','askVolume2','askVolume3','askVolume4','askVolume5','bidPrice1','bidPrice2','bidPrice3','bidPrice4','bidPrice5','bidVolume1','bidVolume2','bidVolume3','bidVolume4','bidVolume5']]
featV1 = np.array(featV1)
##Time-insensitive Set
###V2: bid-ask spread and mid-prices
temp1 = featV1[:,0:5] - featV1[:,10:15]
temp2 = (featV1[:,0:5] + featV1[:,10:15])*0.5
featV2 = np.zeros([temp1.shape[0],temp1.shape[1]+temp2.shape[1]])
featV2[:,0:temp1.shape[1]] = temp1
featV2[:,temp1.shape[1]:] = temp2
###V3: price differences
temp1 = featV1[:,4] - featV1[:,0]
temp2 = featV1[:,10] - featV1[:,14]
temp3 = abs(featV1[:,1:5] - featV1[:,0:4])
temp4 = abs(featV1[:,11:15] - featV1[:,10:14])
featV3 = np.zeros([temp1.shape[0],1+1+temp3.shape[1]+temp4.shape[1]])
featV3[:,0] = temp1
featV3[:,1] = temp2
featV3[:,2:2+temp3.shape[1]] = temp3
featV3[:,2+temp3.shape[1]:] = temp4
###V4: mean prices and volumns
temp1 = np.mean(featV1[:,0:5],1)
temp2 = np.mean(featV1[:,10:15],1)
temp3 = np.mean(featV1[:,5:10],1)
temp4 = np.mean(featV1[:,15:],1)
featV4 = np.zeros([temp1.shape[0],1+1+1+1])
featV4[:,0] = temp1
featV4[:,1] = temp2
featV4[:,2] = temp3
featV4[:,3] = temp4
###V5: accumulated differences
temp1 = np.sum(featV2[:,0:5],1)
temp2 = np.sum(featV1[:,5:10] - featV1[:,15:],1)
featV5 = np.zeros([temp1.shape[0],1+1])
featV5[:,0] = temp1
featV5[:,1] = temp2
##Time-insensitive Set
###V6: price and volume derivatives
temp1 = featV1[1:,0:5] - featV1[:-1,0:5]
temp2 = featV1[1:,10:15] - featV1[:-1,10:15]
temp3 = featV1[1:,5:10] - featV1[:-1,5:10]
temp4 = featV1[1:,15:] - featV1[:-1,15:]
featV6 = np.zeros([temp1.shape[0]+1,temp1.shape[1]+temp2.shape[1]+temp3.shape[1]+temp4.shape[1]]) #由于差分,少掉一个数据,此处补回
featV6[1:,0:temp1.shape[1]] = temp1
featV6[1:,temp1.shape[1]:temp1.shape[1]+temp2.shape[1]] = temp2
featV6[1:,temp1.shape[1]+temp2.shape[1]:temp1.shape[1]+temp2.shape[1]+temp3.shape[1]] = temp3
featV6[1:,temp1.shape[1]+temp2.shape[1]+temp3.shape[1]:] = temp4
##combining the features
feat = np.zeros([featV1.shape[0],sum([featV1.shape[1],featV2.shape[1],featV3.shape[1],featV4.shape[1],featV5.shape[1],featV6.shape[1]])])
feat[:,:featV1.shape[1]] = featV1
feat[:,featV1.shape[1]:featV1.shape[1]+featV2.shape[1]] = featV2
feat[:,featV1.shape[1]+featV2.shape[1]:featV1.shape[1]+featV2.shape[1]+featV3.shape[1]] = featV3
feat[:,featV1.shape[1]+featV2.shape[1]+featV3.shape[1]:featV1.shape[1]+featV2.shape[1]+featV3.shape[1]+featV4.shape[1]] = featV4
feat[:,featV1.shape[1]+featV2.shape[1]+featV3.shape[1]+featV4.shape[1]:featV1.shape[1]+featV2.shape[1]+featV3.shape[1]+featV4.shape[1]+featV5.shape[1]] = featV5
feat[:,featV1.shape[1]+featV2.shape[1]+featV3.shape[1]+featV4.shape[1]+featV5.shape[1]:] = featV6
##normalizing the feature
numFeat = feat.shape[1]
meanFeat = feat.mean(axis=1)
meanFeat.shape = [meanFeat.shape[0],1]
stdFeat = feat.std(axis=1)
stdFeat.shape = [stdFeat.shape[0],1]
normFeat = (feat - meanFeat.repeat(numFeat,axis=1))/stdFeat.repeat(numFeat,axis=1)
#print(normFeat)
api.wmcloud.com 443
```
## 数据标注
选择时间间隔为通联能获取的最小时间间隔(3s),
+ 若下一个单位时刻mid price大于此时的mid price,则标注为向上,
+ 若下一个单位时刻mid price小于此时的mid price,则标注为向下,
+ 若下一个单位时刻mid price等于此时的mid price,则标注为不变,
```py
##mid-price trend of dataset:upward(0),downward(1) or stationary(2)
upY = featV2[1:,5] > featV2[:-1,5]
upY = np.append(upY,0)
numUp = sum(upY)
downY = featV2[1:,5] < featV2[:-1,5]
downY = np.append(downY,0)
numDown = sum(downY)
statY = featV2[1:,5] == featV2[:-1,5]
statY = np.append(statY,0)
numStat = sum(statY)
#Y = np.zeros([upY.shape[0],3])
#Y[:,0] = upY
#Y[:,1] = downY
#Y[:,2] = statY
pUp = np.where(upY==1)[0]
pDown = np.where(downY==1)[0]
pStat = np.where(statY==1)[0]
multiY = np.zeros([upY.shape[0],1])
multiY[pUp] = 0
multiY[pDown] = 1
multiY[pStat] = 2
##divide the dataset into trainSet, and testSst
numTrain = 1200
numTest = 500
#rebalance the radio of upward, downward and stationary data
numTrainUp = 250
numTrainDown = 250
numTrainStat = 400
pUpTrain = pUp[:numTrainUp]
pDownTrain = pDown[:numTrainDown]
pStatTrain = pStat[:numTrainStat]
pTrainTemp = np.append(pUpTrain,pDownTrain)
pTrain = np.append(pTrainTemp,pStatTrain)
trainSet = normFeat[pTrain,:]
#trainSet = normFeat[1:numTrain+1,:]
testSet = normFeat[numTrain+1:numTrain+numTest+1,:]
#trainY = Y[1:numTrain+1,:]
trainMultiYTemp = np.append(multiY[pUpTrain],multiY[pDownTrain])
trainMultiY = np.append(trainMultiYTemp,multiY[pStatTrain])
#trainMultiY = multiY[1:numTrain+1]
testMultiY = multiY[numTrain+1:numTrain+numTest+1]
```
## 分类模型
基于one vs all的multi-class SVM,这里我没有对参数做过多调整,因此看到的模型事实上非常简陋。有兴趣的话也可以用forest tree等ML方法尝试。
```py
##training a multi-class svm model
Model = svm.LinearSVC(C=2.)
Model.fit(trainSet,trainMultiY)
pred = Model.predict(testSet)
ap = Model.score(testSet,testMultiY)
print(ap)
0.522
```
## 结果
我这里拿了11月30日的万科A作为数据来源来预测。之所以拿万科A,是因为我从11月上旬就开始看好这只股票,结果在中旬的时候没有拿住,低位没有补进,谁知道月底就起飞了,让我又爱又恨。我在最后画出了预测结果,蓝线是测试集中的mid price时间序列,红点表示模型预测下一时刻方向向上,绿点表示模型预测下一时刻方向向下,没有画点表示预测方向不变。
```py
testMidPrice = featV2[numTrain+1:numTrain+numTest+1,5]
pUpTest = np.where(pred==0)[0]
pDownTest = np.where(pred==1)[0]
pStatTest = np.where(pred==2)[0]
plt.figure(figsize=(16,5))
plt.plot(range(numTest),testMidPrice,'b-',pUpTest,testMidPrice[pUpTest],'r.',pDownTest,testMidPrice[pDownTest],'g.')
plt.grid()
plt.xlabel('time')
plt.ylabel('midPrice')
```
![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-07-30_579cbdb57b545.png)
## 题外话
现在你看到的是一个极为粗糙的东西,原论文的框架远远比这个复杂,包括对训练集的交叉验证,以及数据的更新替代,bid-ask spread crossing,以及基于此的toy策略(当然这么高频的操作在平台上暂时也实现不了:))等等等等都没有实现。这里我只是选取了前1200个数据作了normalization和rebalance后来预测后500个数据。我现在研二忙成狗,也只能晚上写一写,还得赶着发完论文以后赶紧找实习,所以以后有机会也许再放一个更精细的版本上来。最后感谢通联的朋友特地给我开了历史高频的接口~
';