12.1 order book 分析 · 基于高频 limit order book 数据的短程价格方向预测—— via multi-class SVM

最后更新于:2022-04-01 21:57:57

# 12.1 order book 分析 · 基于高频 limit order book 数据的短程价格方向预测—— via multi-class SVM > 来源:https://uqer.io/community/share/5660665bf9f06c6c8a91b1a0 ## 摘要: 下面的内容是基于文献[Modeling high-frequency limit order book dynamics with support vector machines](https://raw.github.com/ezhulenev/scala-openbook/master/assets/Modeling-high-frequency-limit-order-book-dynamics-with-support-vector-machines.pdf)的框架写的,由于高频数据粗粒度依然有限,只能实现了部分内容。若需要完整理解这个问题以及实现方法,请阅读上述的文献。下面我会简单介绍一下整个框架的内容。 ## 模型构造 作者使用Message book以及Order book作为数据来源,通联没有前者的数据,因此后面的部分只涉及到level1买卖5档的order book数据作为模型的输入。这里我只实现了通过order book数据预测mid price的方向,包括向上,向下,以及不变。对于bid-ask spread crossing的方法相似,我暂时就不放上来了。 ## 特征选择 对order book数据做处理后,可以提取到我们需要的特征向量。总的特征分为三类:基本、时间不敏感和时间敏感三类,这里我们能从数据中获得全部的基本和时间不敏感特征,以及部分时间敏感特征,具体的见图片,或者进一步阅读文献。 ![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-07-31_579d7a02bf38b.png) ```py #importing package import numpy as np import pandas as pd from matplotlib import pyplot as plt from sklearn import svm from CAL.PyCAL import * #global parameter for model date = '20151130' securityID = '000002.XSHE' #万科A trainSetNum = 900 testSetNum = 600 #loading LOB data dataSet = DataAPI.MktTicksHistOneDayGet(securityID=securityID, date=date,pandas='1') #Features representation ##Basic Set ###V1: price and volume (10 levels) featV1 = dataSet[['askPrice1','askPrice2','askPrice3','askPrice4','askPrice5','askVolume1','askVolume2','askVolume3','askVolume4','askVolume5','bidPrice1','bidPrice2','bidPrice3','bidPrice4','bidPrice5','bidVolume1','bidVolume2','bidVolume3','bidVolume4','bidVolume5']] featV1 = np.array(featV1) ##Time-insensitive Set ###V2: bid-ask spread and mid-prices temp1 = featV1[:,0:5] - featV1[:,10:15] temp2 = (featV1[:,0:5] + featV1[:,10:15])*0.5 featV2 = np.zeros([temp1.shape[0],temp1.shape[1]+temp2.shape[1]]) featV2[:,0:temp1.shape[1]] = temp1 featV2[:,temp1.shape[1]:] = temp2 ###V3: price differences temp1 = featV1[:,4] - featV1[:,0] temp2 = featV1[:,10] - featV1[:,14] temp3 = abs(featV1[:,1:5] - featV1[:,0:4]) temp4 = abs(featV1[:,11:15] - featV1[:,10:14]) featV3 = np.zeros([temp1.shape[0],1+1+temp3.shape[1]+temp4.shape[1]]) featV3[:,0] = temp1 featV3[:,1] = temp2 featV3[:,2:2+temp3.shape[1]] = temp3 featV3[:,2+temp3.shape[1]:] = temp4 ###V4: mean prices and volumns temp1 = np.mean(featV1[:,0:5],1) temp2 = np.mean(featV1[:,10:15],1) temp3 = np.mean(featV1[:,5:10],1) temp4 = np.mean(featV1[:,15:],1) featV4 = np.zeros([temp1.shape[0],1+1+1+1]) featV4[:,0] = temp1 featV4[:,1] = temp2 featV4[:,2] = temp3 featV4[:,3] = temp4 ###V5: accumulated differences temp1 = np.sum(featV2[:,0:5],1) temp2 = np.sum(featV1[:,5:10] - featV1[:,15:],1) featV5 = np.zeros([temp1.shape[0],1+1]) featV5[:,0] = temp1 featV5[:,1] = temp2 ##Time-insensitive Set ###V6: price and volume derivatives temp1 = featV1[1:,0:5] - featV1[:-1,0:5] temp2 = featV1[1:,10:15] - featV1[:-1,10:15] temp3 = featV1[1:,5:10] - featV1[:-1,5:10] temp4 = featV1[1:,15:] - featV1[:-1,15:] featV6 = np.zeros([temp1.shape[0]+1,temp1.shape[1]+temp2.shape[1]+temp3.shape[1]+temp4.shape[1]]) #由于差分,少掉一个数据,此处补回 featV6[1:,0:temp1.shape[1]] = temp1 featV6[1:,temp1.shape[1]:temp1.shape[1]+temp2.shape[1]] = temp2 featV6[1:,temp1.shape[1]+temp2.shape[1]:temp1.shape[1]+temp2.shape[1]+temp3.shape[1]] = temp3 featV6[1:,temp1.shape[1]+temp2.shape[1]+temp3.shape[1]:] = temp4 ##combining the features feat = np.zeros([featV1.shape[0],sum([featV1.shape[1],featV2.shape[1],featV3.shape[1],featV4.shape[1],featV5.shape[1],featV6.shape[1]])]) feat[:,:featV1.shape[1]] = featV1 feat[:,featV1.shape[1]:featV1.shape[1]+featV2.shape[1]] = featV2 feat[:,featV1.shape[1]+featV2.shape[1]:featV1.shape[1]+featV2.shape[1]+featV3.shape[1]] = featV3 feat[:,featV1.shape[1]+featV2.shape[1]+featV3.shape[1]:featV1.shape[1]+featV2.shape[1]+featV3.shape[1]+featV4.shape[1]] = featV4 feat[:,featV1.shape[1]+featV2.shape[1]+featV3.shape[1]+featV4.shape[1]:featV1.shape[1]+featV2.shape[1]+featV3.shape[1]+featV4.shape[1]+featV5.shape[1]] = featV5 feat[:,featV1.shape[1]+featV2.shape[1]+featV3.shape[1]+featV4.shape[1]+featV5.shape[1]:] = featV6 ##normalizing the feature numFeat = feat.shape[1] meanFeat = feat.mean(axis=1) meanFeat.shape = [meanFeat.shape[0],1] stdFeat = feat.std(axis=1) stdFeat.shape = [stdFeat.shape[0],1] normFeat = (feat - meanFeat.repeat(numFeat,axis=1))/stdFeat.repeat(numFeat,axis=1) #print(normFeat) api.wmcloud.com 443 ``` ## 数据标注 选择时间间隔为通联能获取的最小时间间隔(3s), + 若下一个单位时刻mid price大于此时的mid price,则标注为向上, + 若下一个单位时刻mid price小于此时的mid price,则标注为向下, + 若下一个单位时刻mid price等于此时的mid price,则标注为不变, ```py ##mid-price trend of dataset:upward(0),downward(1) or stationary(2) upY = featV2[1:,5] > featV2[:-1,5] upY = np.append(upY,0) numUp = sum(upY) downY = featV2[1:,5] < featV2[:-1,5] downY = np.append(downY,0) numDown = sum(downY) statY = featV2[1:,5] == featV2[:-1,5] statY = np.append(statY,0) numStat = sum(statY) #Y = np.zeros([upY.shape[0],3]) #Y[:,0] = upY #Y[:,1] = downY #Y[:,2] = statY pUp = np.where(upY==1)[0] pDown = np.where(downY==1)[0] pStat = np.where(statY==1)[0] multiY = np.zeros([upY.shape[0],1]) multiY[pUp] = 0 multiY[pDown] = 1 multiY[pStat] = 2 ##divide the dataset into trainSet, and testSst numTrain = 1200 numTest = 500 #rebalance the radio of upward, downward and stationary data numTrainUp = 250 numTrainDown = 250 numTrainStat = 400 pUpTrain = pUp[:numTrainUp] pDownTrain = pDown[:numTrainDown] pStatTrain = pStat[:numTrainStat] pTrainTemp = np.append(pUpTrain,pDownTrain) pTrain = np.append(pTrainTemp,pStatTrain) trainSet = normFeat[pTrain,:] #trainSet = normFeat[1:numTrain+1,:] testSet = normFeat[numTrain+1:numTrain+numTest+1,:] #trainY = Y[1:numTrain+1,:] trainMultiYTemp = np.append(multiY[pUpTrain],multiY[pDownTrain]) trainMultiY = np.append(trainMultiYTemp,multiY[pStatTrain]) #trainMultiY = multiY[1:numTrain+1] testMultiY = multiY[numTrain+1:numTrain+numTest+1] ``` ## 分类模型 基于one vs all的multi-class SVM,这里我没有对参数做过多调整,因此看到的模型事实上非常简陋。有兴趣的话也可以用forest tree等ML方法尝试。 ```py ##training a multi-class svm model Model = svm.LinearSVC(C=2.) Model.fit(trainSet,trainMultiY) pred = Model.predict(testSet) ap = Model.score(testSet,testMultiY) print(ap) 0.522 ``` ## 结果 我这里拿了11月30日的万科A作为数据来源来预测。之所以拿万科A,是因为我从11月上旬就开始看好这只股票,结果在中旬的时候没有拿住,低位没有补进,谁知道月底就起飞了,让我又爱又恨。我在最后画出了预测结果,蓝线是测试集中的mid price时间序列,红点表示模型预测下一时刻方向向上,绿点表示模型预测下一时刻方向向下,没有画点表示预测方向不变。 ```py testMidPrice = featV2[numTrain+1:numTrain+numTest+1,5] pUpTest = np.where(pred==0)[0] pDownTest = np.where(pred==1)[0] pStatTest = np.where(pred==2)[0] plt.figure(figsize=(16,5)) plt.plot(range(numTest),testMidPrice,'b-',pUpTest,testMidPrice[pUpTest],'r.',pDownTest,testMidPrice[pDownTest],'g.') plt.grid() plt.xlabel('time') plt.ylabel('midPrice') ``` ![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2016-07-30_579cbdb57b545.png) ## 题外话 现在你看到的是一个极为粗糙的东西,原论文的框架远远比这个复杂,包括对训练集的交叉验证,以及数据的更新替代,bid-ask spread crossing,以及基于此的toy策略(当然这么高频的操作在平台上暂时也实现不了:))等等等等都没有实现。这里我只是选取了前1200个数据作了normalization和rebalance后来预测后500个数据。我现在研二忙成狗,也只能晚上写一写,还得赶着发完论文以后赶紧找实习,所以以后有机会也许再放一个更精细的版本上来。最后感谢通联的朋友特地给我开了历史高频的接口~
';