Partition List
最后更新于:2022-04-02 01:10:19
# Partition List
### Source
- leetcode: [Partition List | LeetCode OJ](https://leetcode.com/problems/partition-list/)
- lintcode: [(96) Partition List](http://www.lintcode.com/en/problem/partition-list/)
~~~
Given a linked list and a value x, partition it such that all nodes
less than x come before nodes greater than or equal to x.
You should preserve the original relative order of the nodes
in each of the two partitions.
For example,
Given 1->4->3->2->5->2->null and x = 3,
return 1->2->2->4->3->5->null.
~~~
### 题解
此题出自 *CTCI* 题 2.4,依据题意,是要根据值x对链表进行分割操作,具体是指将所有小于x的节点放到不小于x的节点之前,咋一看和快速排序的分割有些类似,但是这个题的不同之处在于只要求将小于x的节点放到前面,而并不要求对元素进行排序。
这种分割的题使用两路指针即可轻松解决。左边指针指向小于x的节点,右边指针指向不小于x的节点。由于左右头节点不确定,我们可以使用两个dummy节点。
### Python
~~~
"""
Definition of ListNode
class ListNode(object):
def __init__(self, val, next=None):
self.val = val
self.next = next
"""
class Solution:
"""
@param head: The first node of linked list.
@param x: an integer
@return: a ListNode
"""
def partition(self, head, x):
if head is None:
return None
leftDummy = ListNode(0)
left = leftDummy
rightDummy = ListNode(0)
right = rightDummy
node = head
while node is not None:
if node.val < x:
left.next = node
left = left.next
else:
right.next = node
right = right.next
node = node.next
# post-processing
right.next = None
left.next = rightDummy.next
return leftDummy.next
~~~
### C++
~~~
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode* partition(ListNode* head, int x) {
if (head == NULL) return NULL;
ListNode *leftDummy = new ListNode(0);
ListNode *left = leftDummy;
ListNode *rightDummy = new ListNode(0);
ListNode *right = rightDummy;
ListNode *node = head;
while (node != NULL) {
if (node->val < x) {
left->next = node;
left = left->next;
} else {
right->next = node;
right = right->next;
}
node = node->next;
}
// post-processing
right->next = NULL;
left->next = rightDummy->next;
return leftDummy->next;
}
};
~~~
### Java
~~~
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
public class Solution {
public ListNode partition(ListNode head, int x) {
if (head == null) return null;
ListNode leftDummy = new ListNode(0);
ListNode left = leftDummy;
ListNode rightDummy = new ListNode(0);
ListNode right = rightDummy;
ListNode node = head;
while (node != null) {
if (node.val < x) {
left.next = node;
left = left.next;
} else {
right.next = node;
right = right.next;
}
node = node.next;
}
// post-processing
right.next = null;
left.next = rightDummy.next;
return leftDummy.next;
}
}
~~~
### 源码分析
1. 异常处理
1. 引入左右两个dummy节点及left和right左右尾指针
1. 遍历原链表
1. 处理右链表,置`right->next`为空,将右链表的头部链接到左链表尾指针的next,返回左链表的头部
### 复杂度分析
遍历链表一次,时间复杂度近似为 O(n)O(n)O(n), 使用了两个 dummy 节点及中间变量,空间复杂度近似为 O(1)O(1)O(1).
';