Search in Rotated Sorted Array
最后更新于:2022-04-02 01:09:05
# Search in Rotated Sorted Array
### Source
- leetcode: [Search in Rotated Sorted Array | LeetCode OJ](https://leetcode.com/problems/search-in-rotated-sorted-array/)
- lintcode: [(62) Search in Rotated Sorted Array](http://www.lintcode.com/en/problem/search-in-rotated-sorted-array/)
### Problem
Suppose a sorted array is rotated at some pivot unknown to you beforehand.
(i.e., `0 1 2 4 5 6 7` might become `4 5 6 7 0 1 2`).
You are given a target value to search. If found in the array return itsindex, otherwise return -1.
You may assume no duplicate exists in the array.
#### Example
For `[4, 5, 1, 2, 3]` and `target=1`, return `2`.
For `[4, 5, 1, 2, 3]` and `target=0`, return `-1`.
#### Challenge
O(logN) time
### 题解 - 找到有序数组
对于旋转数组的分析可使用画图的方法,如下图所示,升序数组经旋转后可能为如下两种形式。
![Rotated Array](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2015-10-24_562b1f420c27a.png)
对于有序数组,使用二分搜索比较方便。分析题中的数组特点,旋转后初看是乱序数组,但仔细一看其实里面是存在两段有序数组的。刚开始做这道题时可能会去比较`target`和`A[mid]`, 但分析起来异常复杂。**该题较为巧妙的地方在于如何找出旋转数组中的局部有序数组,并使用二分搜索解之。**结合实际数组在纸上分析较为方便。
### C++
~~~
/**
* 本代码fork自
* http://www.jiuzhang.com/solutions/search-in-rotated-sorted-array/
*/
class Solution {
/**
* param A : an integer ratated sorted array
* param target : an integer to be searched
* return : an integer
*/
public:
int search(vector &A, int target) {
if (A.empty()) {
return -1;
}
vector::size_type start = 0;
vector::size_type end = A.size() - 1;
vector::size_type mid;
while (start + 1 < end) {
mid = start + (end - start) / 2;
if (target == A[mid]) {
return mid;
}
if (A[start] < A[mid]) {
// situation 1, numbers between start and mid are sorted
if (A[start] <= target && target < A[mid]) {
end = mid;
} else {
start = mid;
}
} else {
// situation 2, numbers between mid and end are sorted
if (A[mid] < target && target <= A[end]) {
start = mid;
} else {
end = mid;
}
}
}
if (A[start] == target) {
return start;
}
if (A[end] == target) {
return end;
}
return -1;
}
};
~~~
### Java
~~~
public class Solution {
/**
*@param A : an integer rotated sorted array
*@param target : an integer to be searched
*return : an integer
*/
public int search(int[] A, int target) {
if (A == null || A.length == 0) return -1;
int lb = 0, ub = A.length - 1;
while (lb + 1 < ub) {
int mid = lb + (ub - lb) / 2;
if (A[mid] == target) return mid;
if (A[mid] > A[lb]) {
// case1: numbers between lb and mid are sorted
if (A[lb] <= target && target <= A[mid]) {
ub = mid;
} else {
lb = mid;
}
} else {
// case2: numbers between mid and ub are sorted
if (A[mid] <= target && target <= A[ub]) {
lb = mid;
} else {
ub = mid;
}
}
}
if (A[lb] == target) {
return lb;
} else if (A[ub] == target) {
return ub;
}
return -1;
}
}
~~~
### 源码分析
1. 若`target == A[mid]`,索引找到,直接返回
1. 寻找局部有序数组,分析`A[mid]`和两段有序的数组特点,由于旋转后前面有序数组最小值都比后面有序数组最大值大。故若`A[start] < A[mid]`成立,则start与mid间的元素必有序(要么是前一段有序数组,要么是后一段有序数组,还有可能是未旋转数组)。
1. 接着在有序数组`A[start]~A[mid]`间进行二分搜索,但能在`A[start]~A[mid]`间搜索的前提是`A[start] <= target <= A[mid]`。
1. 接着在有序数组`A[mid]~A[end]`间进行二分搜索,注意前提条件。
1. 搜索完毕时索引若不是mid或者未满足while循环条件,则测试A[start]或者A[end]是否满足条件。
1. 最后若未找到满足条件的索引,则返回-1.
### 复杂度分析
分两段二分,时间复杂度仍近似为 O(logn)O(\log n)O(logn).
';