Subarray Sum Closest
最后更新于:2022-04-02 01:08:12
# Subarray Sum Closest
### Source
- lintcode: [(139) Subarray Sum Closest](http://www.lintcode.com/en/problem/subarray-sum-closest/)
~~~
Given an integer array, find a subarray with sum closest to zero.
Return the indexes of the first number and last number.
Example
Given [-3, 1, 1, -3, 5], return [0, 2], [1, 3], [1, 1], [2, 2] or [0, 4]
Challenge
O(nlogn) time
~~~
### 题解
题 [Zero Sum Subarray | Data Structure and Algorithm](http://algorithm.yuanbin.me/zh-cn/integer_array/zero_sum_subarray.html) 的变形题,由于要求的子串和不一定,故哈希表的方法不再适用,使用解法4 - 排序即可在 O(nlogn)O(n \log n)O(nlogn) 内解决。具体步骤如下:
1. 首先遍历一次数组求得子串和。
1. 对子串和排序。
1. 逐个比较相邻两项差值的绝对值,返回差值绝对值最小的两项。
### C++
~~~
class Solution {
public:
/**
* @param nums: A list of integers
* @return: A list of integers includes the index of the first number
* and the index of the last number
*/
vector subarraySumClosest(vector nums){
vector result;
if (nums.empty()) {
return result;
}
const int num_size = nums.size();
vector > sum_index(num_size + 1);
for (int i = 0; i < num_size; ++i) {
sum_index[i + 1].first = sum_index[i].first + nums[i];
sum_index[i + 1].second = i + 1;
}
sort(sum_index.begin(), sum_index.end());
int min_diff = INT_MAX;
int closest_index = 1;
for (int i = 1; i < num_size + 1; ++i) {
int sum_diff = abs(sum_index[i].first - sum_index[i - 1].first);
if (min_diff > sum_diff) {
min_diff = sum_diff;
closest_index = i;
}
}
int left_index = min(sum_index[closest_index - 1].second,\
sum_index[closest_index].second);
int right_index = -1 + max(sum_index[closest_index - 1].second,\
sum_index[closest_index].second);
result.push_back(left_index);
result.push_back(right_index);
return result;
}
};
~~~
### 源码分析
为避免对单个子串和是否为最小情形的单独考虑,我们可以采取类似链表 dummy 节点的方法规避,简化代码实现。故初始化`sum_index`时需要`num_size + 1`个。这里为避免 vector 反复扩充空间降低运行效率,使用`resize`一步到位。`sum_index`即最后结果中`left_index`和`right_index`等边界可以结合简单例子分析确定。
### 复杂度分析
1. 遍历一次求得子串和时间复杂度为 O(n)O(n)O(n), 空间复杂度为 O(n+1)O(n+1)O(n+1).
1. 对子串和排序,平均时间复杂度为 O(nlogn)O(n \log n)O(nlogn).
1. 遍历排序后的子串和数组,时间复杂度为 O(n)O(n)O(n).
总的时间复杂度为 O(nlogn)O(n \log n)O(nlogn), 空间复杂度为 O(n)O(n)O(n).
### 扩展
- [algorithm - How to find the subarray that has sum closest to zero or a certain value t in O(nlogn) - Stack Overflow](http://stackoverflow.com/questions/16388930/how-to-find-the-subarray-that-has-sum-closest-to-zero-or-a-certain-value-t-in-o)
';