Route Between Two Nodes in Graph
最后更新于:2022-04-02 01:13:41
# Route Between Two Nodes in Graph
### Source
- lintcode: [(176) Route Between Two Nodes in Graph](http://www.lintcode.com/en/problem/route-between-two-nodes-in-graph/)
- [Find if there is a path between two vertices in a directed graph - GeeksforGeeks](http://www.geeksforgeeks.org/find-if-there-is-a-path-between-two-vertices-in-a-given-graph/)
### Problem
Given a directed graph, design an algorithm to find out whether there is aroute between two nodes.
#### Example
Given graph:
~~~
A----->B----->C
\ |
\ |
\ |
\ v
->D----->E
~~~
for `s = B` and `t = E`, return `true`
for `s = D` and `t = C`, return `false`
### 题解1 - [DFS](# "Depth-First Search, 深度优先搜索")
检测图中两点是否通路,图搜索的简单问题,[DFS](# "Depth-First Search, 深度优先搜索") 或者 [BFS](# "Breadth-First Search, 广度优先搜索") 均可,注意检查是否有环即可。这里使用哈希表记录节点是否被处理较为方便。深搜时以起点出发,递归处理其邻居节点,**需要注意的是处理邻居节点的循环时不是直接 return, 而只在找到路径为真时才返回 true, 否则会过早返回 false 而忽略后续可能满足条件的路径。**
### Java
~~~
/**
* Definition for Directed graph.
* class DirectedGraphNode {
* int label;
* ArrayList neighbors;
* DirectedGraphNode(int x) {
* label = x;
* neighbors = new ArrayList();
* }
* }
*/
public class Solution {
/**
* @param graph: A list of Directed graph node
* @param s: the starting Directed graph node
* @param t: the terminal Directed graph node
* @return: a boolean value
*/
public boolean hasRoute(ArrayList graph,
DirectedGraphNode s, DirectedGraphNode t) {
Set visited = new HashSet();
return dfs(graph, s, t, visited);
}
public boolean dfs(ArrayList graph,
DirectedGraphNode s, DirectedGraphNode t,
Set visited) {
if (s == t) {
return true;
} else {
// corner cases
if (s == null || t == null) return false;
// flag visited node, avoid cylic
visited.add(s);
// compare unvisited neighbor nodes recursively
if (s.neighbors.size() > 0) {
for (DirectedGraphNode node : s.neighbors) {
if (visited.contains(node)) continue;
if (dfs(graph, node, t, visited)) return true;
}
}
}
return false;
}
}
~~~
### 源码分析
根据构造函数的实现,Java 中判断是否有邻居节点时使用`.size`,而不是`null`. 注意深搜前检测是否被处理过。行
~~~
if (dfs(graph, node, t, visited)) return true;
~~~
中注意不是直接 return, 只在为 true 时返回。
### 复杂度分析
遍历所有点及边,时间复杂度为 O(V+E)O(V+E)O(V+E).
### 题解2 - [BFS](# "Breadth-First Search, 广度优先搜索")
除了深搜处理邻居节点,我们也可以采用 [BFS](# "Breadth-First Search, 广度优先搜索") 结合队列处理,优点是不会爆栈,缺点是空间复杂度稍高和实现复杂点。
### Java
~~~
/**
* Definition for Directed graph.
* class DirectedGraphNode {
* int label;
* ArrayList neighbors;
* DirectedGraphNode(int x) {
* label = x;
* neighbors = new ArrayList();
* }
* }
*/
public class Solution {
/**
* @param graph: A list of Directed graph node
* @param s: the starting Directed graph node
* @param t: the terminal Directed graph node
* @return: a boolean value
*/
public boolean hasRoute(ArrayList graph,
DirectedGraphNode s, DirectedGraphNode t) {
if (graph == null || s == null || t == null) return false;
Queue q = new LinkedList();
Set visited = new HashSet();
q.offer(s);
while (!q.isEmpty()) {
int qLen = q.size();
for (int i = 0; i < qLen; i++) {
DirectedGraphNode node = q.poll();
visited.add(node);
if (node == t) return true;
// push neighbors into queue
if (node.neighbors.size() > 0) {
for (DirectedGraphNode n : node.neighbors) {
// avoid cylic
if (visited.contains(n)) continue;
q.offer(n);
}
}
}
}
return false;
}
}
~~~
### 源码分析
同题解一。
### 复杂度分析
时间复杂度同题解一,也是 O(V+E)O(V+E)O(V+E), 空间复杂度最坏情况下为两层多叉树,为 O(V+E)O(V+E)O(V+E).
';