Factorial Trailing Zeroes

最后更新于:2022-04-02 01:09:35

# Factorial Trailing Zeroes ### Source - leetcode: [Factorial Trailing Zeroes | LeetCode OJ](https://leetcode.com/problems/factorial-trailing-zeroes/) - lintcode: [(2) Trailing Zeros](http://www.lintcode.com/en/problem/trailing-zeros/) ~~~ Write an algorithm which computes the number of trailing zeros in n factorial. Example 11! = 39916800, so the out should be 2 Challenge O(log N) time ~~~ ### 题解1 - Iterative 找阶乘数中末尾的连零数量,容易想到的是找相乘能为10的整数倍的数,如 2×52 \times 52×5, 1×101 \times 101×10 等,遥想当初做阿里笔试题时遇到过类似的题,当时想着算算5和10的个数就好了,可万万没想到啊,25可以变为两个5相乘!真是蠢死了... 根据数论里面的知识,任何正整数都可以表示为它的质因数的乘积[wikipedia](#)。所以比较准确的思路应该是计算质因数5和2的个数,取小的即可。质因数2的个数显然要大于5的个数,故只需要计算给定阶乘数中质因数中5的个数即可。原题的问题即转化为求阶乘数中质因数5的个数,首先可以试着分析下100以内的数,再试试100以上的数,聪明的你一定想到了可以使用求余求模等方法 :) ### Python ~~~ class Solution: # @param {integer} n # @return {integer} def trailingZeroes(self, n): if n < 0: return -1 count = 0 while n > 0: n /= 5 count += n return count ~~~ ### C++ ~~~ class Solution { public: int trailingZeroes(int n) { if (n < 0) { return -1; } int count = 0; for (; n > 0; n /= 5) { count += (n / 5); } return count; } }; ~~~ ### Java ~~~ public class Solution { public int trailingZeroes(int n) { if (n < 0) { return -1; } int count = 0; for (; n > 0; n /= 5) { count += (n / 5); } return count; } } ~~~ ### 源码分析 1. 异常处理,小于0的数返回-1. 1. 先计算5的正整数幂都有哪些,不断使用 n / 5 即可知质因数5的个数。 1. 在循环时使用 `n /= 5` 而不是 `i *= 5`, 可有效防止溢出。 ****> lintcode 和 leetcode 上的方法名不一样,在两个 OJ 上分别提交的时候稍微注意下。 ### 复杂度分析 关键在于`n /= 5`执行的次数,时间复杂度 log5n\log_5 nlog5n,使用了`count`作为返回值,空间复杂度 O(1)O(1)O(1). ### 题解2 - Recursive 可以使用迭代处理的程序往往用递归,而且往往更为优雅。递归的终止条件为`n <= 0`. ### Python ~~~ class Solution: # @param {integer} n # @return {integer} def trailingZeroes(self, n): if n == 0: return 0 elif n < 0: return -1 else: return n / 5 + self.trailingZeroes(n / 5) ~~~ ### C++ ~~~ class Solution { public: int trailingZeroes(int n) { if (n == 0) { return 0; } else if (n < 0) { return -1; } else { return n / 5 + trailingZeroes(n / 5); } } }; ~~~ ### Java ~~~ public class Solution { public int trailingZeroes(int n) { if (n == 0) { return 0; } else if (n < 0) { return -1; } else { return n / 5 + trailingZeroes(n / 5); } } } ~~~ ### 源码分析 这里将负数输入视为异常,返回-1而不是0. 注意使用递归时务必注意收敛和终止条件的返回值。这里递归层数最多不超过 log5n\log_5 nlog5n, 因此效率还是比较高的。 ### 复杂度分析 递归层数最大为 log5n\log_5 nlog5n, 返回值均在栈上,可以认为没有使用辅助的堆空间。 ### Reference - wikipedia > . [Prime factor - Wikipedia, the free encyclopedia](http://en.wikipedia.org/wiki/Prime_factor)[ ↩](# "Jump back to footnote [wikipedia] in the text.") - [Count trailing zeroes in factorial of a number - GeeksforGeeks](http://www.geeksforgeeks.org/count-trailing-zeroes-factorial-number/)
';