Topological Sorting

最后更新于:2022-04-02 01:13:43

# Topological Sorting ### Source - lintcode: [(127) Topological Sorting](http://www.lintcode.com/en/problem/topological-sorting/) - [Topological Sorting - GeeksforGeeks](http://www.geeksforgeeks.org/topological-sorting/) ~~~ Given an directed graph, a topological order of the graph nodes is defined as follow: For each directed edge A -> B in graph, A must before B in the order list. The first node in the order can be any node in the graph with no nodes direct to it. Find any topological order for the given graph. ~~~ ExampleFor graph as follow: ![Topological Sorting](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2015-10-24_562b1f6911978.jpeg) ~~~ The topological order can be: [0, 1, 2, 3, 4, 5] [0, 2, 3, 1, 5, 4] ... Note You can assume that there is at least one topological order in the graph. Challenge Can you do it in both BFS and DFS? ~~~ ### 题解1 - [DFS](# "Depth-First Search, 深度优先搜索") and [BFS](# "Breadth-First Search, 广度优先搜索") 图搜索相关的问题较为常见的解法是用 [DFS](# "Depth-First Search, 深度优先搜索"),这里结合 [BFS](# "Breadth-First Search, 广度优先搜索") 进行求解,分为三步走: 1. 统计各定点的入度——只需统计节点在邻接列表中出现的次数即可知。 1. 遍历图中各节点,找到入度为0的节点。 1. 对入度为0的节点进行递归 [DFS](# "Depth-First Search, 深度优先搜索"),将节点加入到最终返回结果中。 ### C++ ~~~ /** * Definition for Directed graph. * struct DirectedGraphNode { * int label; * vector neighbors; * DirectedGraphNode(int x) : label(x) {}; * }; */ class Solution { public: /** * @param graph: A list of Directed graph node * @return: Any topological order for the given graph. */ vector topSort(vector graph) { vector result; if (graph.size() == 0) return result; map indegree; // get indegree of all DirectedGraphNode indeg(graph, indegree); // dfs recursively for (int i = 0; i < graph.size(); ++i) { if (indegree[graph[i]] == 0) { dfs(indegree, graph[i], result); } } return result; } private: /** get indegree of all DirectedGraphNode * */ void indeg(vector &graph, map &indegree) { for (int i = 0; i < graph.size(); ++i) { for (int j = 0; j < graph[i]->neighbors.size(); j++) { if (indegree.find(graph[i]->neighbors[j]) == indegree.end()) { indegree[graph[i]->neighbors[j]] = 1; } else { indegree[graph[i]->neighbors[j]] += 1; } } } } void dfs(map &indegree, DirectedGraphNode *i, vector &ret) { ret.push_back(i); indegree[i]--; for (int j = 0; j < i->neighbors.size(); ++j) { indegree[i->neighbors[j]]--; if (indegree[i->neighbors[j]] == 0) { dfs(indegree, i->neighbors[j], ret); } } } }; ~~~ ### 源码分析 C++中使用 unordered_map 可获得更高的性能,私有方法中使用引用传值。 ### 复杂度分析 以 V 表示顶点数,E 表示有向图中边的条数。 首先获得节点的入度数,时间复杂度为 O(V+E)O(V+E)O(V+E), 使用了哈希表存储,空间复杂度为 O(V)O(V)O(V). 遍历图求得入度为0的节点,时间复杂度为 O(V)O(V)O(V). 仅在入度为0时调用 [DFS](# "Depth-First Search, 深度优先搜索"),故时间复杂度为 O(V+E)O(V+E)O(V+E). 需要注意的是这里的 [DFS](# "Depth-First Search, 深度优先搜索") 不是纯 [DFS](# "Depth-First Search, 深度优先搜索"),使用了 [BFS](# "Breadth-First Search, 广度优先搜索") 的思想进行了优化,否则一个节点将被遍历多次,时间复杂度可能恶化为指数级别。 综上,时间复杂度近似为 O(V+E)O(V+E)O(V+E), 空间复杂度为 O(V)O(V)O(V). ### 题解2 - [BFS](# "Breadth-First Search, 广度优先搜索") 拓扑排序除了可用 [DFS](# "Depth-First Search, 深度优先搜索") 求解外,也可使用 [BFS](# "Breadth-First Search, 广度优先搜索"), 具体方法为: 1. 获得图中各节点的入度。 1. [BFS](# "Breadth-First Search, 广度优先搜索") 首先遍历求得入度数为0的节点,入队,便于下一次 [BFS](# "Breadth-First Search, 广度优先搜索")。 1. 队列不为空时,弹出队顶元素并对其邻接节点进行 [BFS](# "Breadth-First Search, 广度优先搜索"),将入度为0的节点加入到最终结果和队列中,重复此过程直至队列为空。 ### C++ ~~~ /** * Definition for Directed graph. * struct DirectedGraphNode { * int label; * vector neighbors; * DirectedGraphNode(int x) : label(x) {}; * }; */ class Solution { public: /** * @param graph: A list of Directed graph node * @return: Any topological order for the given graph. */ vector topSort(vector graph) { vector result; if (graph.size() == 0) return result; map indegree; // get indegree of all DirectedGraphNode indeg(graph, indegree); queue q; // bfs bfs(graph, indegree, q, result); return result; } private: /** get indegree of all DirectedGraphNode * */ void indeg(vector &graph, map &indegree) { for (int i = 0; i < graph.size(); ++i) { for (int j = 0; j < graph[i]->neighbors.size(); j++) { if (indegree.find(graph[i]->neighbors[j]) == indegree.end()) { indegree[graph[i]->neighbors[j]] = 1; } else { indegree[graph[i]->neighbors[j]] += 1; } } } } void bfs(vector &graph, map &indegree, queue &q, vector &ret) { for (int i = 0; i < graph.size(); ++i) { if (indegree[graph[i]] == 0) { ret.push_back(graph[i]); q.push(graph[i]); } } while (!q.empty()) { DirectedGraphNode *cur = q.front(); q.pop(); for(int j = 0; j < cur->neighbors.size(); ++j) { indegree[cur->neighbors[j]]--; if (indegree[cur->neighbors[j]] == 0) { ret.push_back(cur->neighbors[j]); q.push(cur->neighbors[j]); } } } } }; ~~~ ### 源码分析 C++中在判断入度是否为0时将对 map 产生副作用,在求入度数时只有入度数大于等于1才会出现在 map 中,故不在 map 中时直接调用 indegree 方法将产生新的键值对,初始值为0,恰好满足此题需求。 ### 复杂度分析 同题解1 的分析,时间复杂度为 O(V+E)O(V+E)O(V+E), 空间复杂度为 O(V)O(V)O(V). ### Reference - [Topological Sorting 参考程序 Java/C++/Python](http://www.jiuzhang.com/solutions/topological-sorting/)
';