Topological Sorting
最后更新于:2022-04-02 01:13:43
# Topological Sorting
### Source
- lintcode: [(127) Topological Sorting](http://www.lintcode.com/en/problem/topological-sorting/)
- [Topological Sorting - GeeksforGeeks](http://www.geeksforgeeks.org/topological-sorting/)
~~~
Given an directed graph, a topological order of the graph nodes is defined as follow:
For each directed edge A -> B in graph, A must before B in the order list.
The first node in the order can be any node in the graph with no nodes direct to it.
Find any topological order for the given graph.
~~~
ExampleFor graph as follow:
![Topological Sorting](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/2015-10-24_562b1f6911978.jpeg)
~~~
The topological order can be:
[0, 1, 2, 3, 4, 5]
[0, 2, 3, 1, 5, 4]
...
Note
You can assume that there is at least one topological order in the graph.
Challenge
Can you do it in both BFS and DFS?
~~~
### 题解1 - [DFS](# "Depth-First Search, 深度优先搜索") and [BFS](# "Breadth-First Search, 广度优先搜索")
图搜索相关的问题较为常见的解法是用 [DFS](# "Depth-First Search, 深度优先搜索"),这里结合 [BFS](# "Breadth-First Search, 广度优先搜索") 进行求解,分为三步走:
1. 统计各定点的入度——只需统计节点在邻接列表中出现的次数即可知。
1. 遍历图中各节点,找到入度为0的节点。
1. 对入度为0的节点进行递归 [DFS](# "Depth-First Search, 深度优先搜索"),将节点加入到最终返回结果中。
### C++
~~~
/**
* Definition for Directed graph.
* struct DirectedGraphNode {
* int label;
* vector neighbors;
* DirectedGraphNode(int x) : label(x) {};
* };
*/
class Solution {
public:
/**
* @param graph: A list of Directed graph node
* @return: Any topological order for the given graph.
*/
vector topSort(vector graph) {
vector result;
if (graph.size() == 0) return result;
map indegree;
// get indegree of all DirectedGraphNode
indeg(graph, indegree);
// dfs recursively
for (int i = 0; i < graph.size(); ++i) {
if (indegree[graph[i]] == 0) {
dfs(indegree, graph[i], result);
}
}
return result;
}
private:
/** get indegree of all DirectedGraphNode
*
*/
void indeg(vector &graph,
map &indegree) {
for (int i = 0; i < graph.size(); ++i) {
for (int j = 0; j < graph[i]->neighbors.size(); j++) {
if (indegree.find(graph[i]->neighbors[j]) == indegree.end()) {
indegree[graph[i]->neighbors[j]] = 1;
} else {
indegree[graph[i]->neighbors[j]] += 1;
}
}
}
}
void dfs(map &indegree, DirectedGraphNode *i,
vector &ret) {
ret.push_back(i);
indegree[i]--;
for (int j = 0; j < i->neighbors.size(); ++j) {
indegree[i->neighbors[j]]--;
if (indegree[i->neighbors[j]] == 0) {
dfs(indegree, i->neighbors[j], ret);
}
}
}
};
~~~
### 源码分析
C++中使用 unordered_map 可获得更高的性能,私有方法中使用引用传值。
### 复杂度分析
以 V 表示顶点数,E 表示有向图中边的条数。
首先获得节点的入度数,时间复杂度为 O(V+E)O(V+E)O(V+E), 使用了哈希表存储,空间复杂度为 O(V)O(V)O(V). 遍历图求得入度为0的节点,时间复杂度为 O(V)O(V)O(V). 仅在入度为0时调用 [DFS](# "Depth-First Search, 深度优先搜索"),故时间复杂度为 O(V+E)O(V+E)O(V+E).
需要注意的是这里的 [DFS](# "Depth-First Search, 深度优先搜索") 不是纯 [DFS](# "Depth-First Search, 深度优先搜索"),使用了 [BFS](# "Breadth-First Search, 广度优先搜索") 的思想进行了优化,否则一个节点将被遍历多次,时间复杂度可能恶化为指数级别。
综上,时间复杂度近似为 O(V+E)O(V+E)O(V+E), 空间复杂度为 O(V)O(V)O(V).
### 题解2 - [BFS](# "Breadth-First Search, 广度优先搜索")
拓扑排序除了可用 [DFS](# "Depth-First Search, 深度优先搜索") 求解外,也可使用 [BFS](# "Breadth-First Search, 广度优先搜索"), 具体方法为:
1. 获得图中各节点的入度。
1. [BFS](# "Breadth-First Search, 广度优先搜索") 首先遍历求得入度数为0的节点,入队,便于下一次 [BFS](# "Breadth-First Search, 广度优先搜索")。
1. 队列不为空时,弹出队顶元素并对其邻接节点进行 [BFS](# "Breadth-First Search, 广度优先搜索"),将入度为0的节点加入到最终结果和队列中,重复此过程直至队列为空。
### C++
~~~
/**
* Definition for Directed graph.
* struct DirectedGraphNode {
* int label;
* vector neighbors;
* DirectedGraphNode(int x) : label(x) {};
* };
*/
class Solution {
public:
/**
* @param graph: A list of Directed graph node
* @return: Any topological order for the given graph.
*/
vector topSort(vector graph) {
vector result;
if (graph.size() == 0) return result;
map indegree;
// get indegree of all DirectedGraphNode
indeg(graph, indegree);
queue q;
// bfs
bfs(graph, indegree, q, result);
return result;
}
private:
/** get indegree of all DirectedGraphNode
*
*/
void indeg(vector &graph,
map &indegree) {
for (int i = 0; i < graph.size(); ++i) {
for (int j = 0; j < graph[i]->neighbors.size(); j++) {
if (indegree.find(graph[i]->neighbors[j]) == indegree.end()) {
indegree[graph[i]->neighbors[j]] = 1;
} else {
indegree[graph[i]->neighbors[j]] += 1;
}
}
}
}
void bfs(vector &graph, map &indegree,
queue &q, vector &ret) {
for (int i = 0; i < graph.size(); ++i) {
if (indegree[graph[i]] == 0) {
ret.push_back(graph[i]);
q.push(graph[i]);
}
}
while (!q.empty()) {
DirectedGraphNode *cur = q.front();
q.pop();
for(int j = 0; j < cur->neighbors.size(); ++j) {
indegree[cur->neighbors[j]]--;
if (indegree[cur->neighbors[j]] == 0) {
ret.push_back(cur->neighbors[j]);
q.push(cur->neighbors[j]);
}
}
}
}
};
~~~
### 源码分析
C++中在判断入度是否为0时将对 map 产生副作用,在求入度数时只有入度数大于等于1才会出现在 map 中,故不在 map 中时直接调用 indegree 方法将产生新的键值对,初始值为0,恰好满足此题需求。
### 复杂度分析
同题解1 的分析,时间复杂度为 O(V+E)O(V+E)O(V+E), 空间复杂度为 O(V)O(V)O(V).
### Reference
- [Topological Sorting 参考程序 Java/C++/Python](http://www.jiuzhang.com/solutions/topological-sorting/)
';