Unique Paths II

最后更新于:2022-04-02 01:12:52

# Unique Paths II - tags: [[DP_Matrix](# "根据动态规划解题的四要素,矩阵类动态规划问题通常可用 f[x][y] 表示从起点走到坐标(x,y)的值")] ### Source - lintcode: [(115) Unique Paths II](http://www.lintcode.com/en/problem/unique-paths-ii/) ~~~ Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. How many unique paths would there be? An obstacle and empty space is marked as 1 and 0 respectively in the grid. Note m and n will be at most 100. Example For example, There is one obstacle in the middle of a 3x3 grid as illustrated below. [ [0,0,0], [0,1,0], [0,0,0] ] The total number of unique paths is 2. ~~~ ### 题解 在上题的基础上加了obstacal这么一个限制条件,那么也就意味着凡是遇到障碍点,其路径数马上变为0,需要注意的是初始化环节和上题有较大不同。首先来看看错误的初始化实现。 ### C++ initialization error ~~~ class Solution { public: /** * @param obstacleGrid: A list of lists of integers * @return: An integer */ int uniquePathsWithObstacles(vector > &obstacleGrid) { if(obstacleGrid.empty() || obstacleGrid[0].empty()) { return 0; } const int M = obstacleGrid.size(); const int N = obstacleGrid[0].size(); vector > ret(M, vector(N, 0)); for (int i = 0; i != M; ++i) { if (0 == obstacleGrid[i][0]) { ret[i][0] = 1; } } for (int i = 0; i != N; ++i) { if (0 == obstacleGrid[0][i]) { ret[0][i] = 1; } } for (int i = 1; i != M; ++i) { for (int j = 1; j != N; ++j) { if (obstacleGrid[i][j]) { ret[i][j] = 0; } else { ret[i][j] = ret[i -1][j] + ret[i][j - 1]; } } } return ret[M - 1][N - 1]; } }; ~~~ ### 源码分析 错误之处在于初始化第0行和第0列时,未考虑到若第0行/列有一个坐标出现障碍物,则当前行/列后的元素路径数均为0! ### C++ ~~~ class Solution { public: /** * @param obstacleGrid: A list of lists of integers * @return: An integer */ int uniquePathsWithObstacles(vector > &obstacleGrid) { if(obstacleGrid.empty() || obstacleGrid[0].empty()) { return 0; } const int M = obstacleGrid.size(); const int N = obstacleGrid[0].size(); vector > ret(M, vector(N, 0)); for (int i = 0; i != M; ++i) { if (obstacleGrid[i][0]) { break; } else { ret[i][0] = 1; } } for (int i = 0; i != N; ++i) { if (obstacleGrid[0][i]) { break; } else { ret[0][i] = 1; } } for (int i = 1; i != M; ++i) { for (int j = 1; j != N; ++j) { if (obstacleGrid[i][j]) { ret[i][j] = 0; } else { ret[i][j] = ret[i -1][j] + ret[i][j - 1]; } } } return ret[M - 1][N - 1]; } }; ~~~ ### 源码分析 1. 异常处理 1. 初始化二维矩阵(全0阵),尤其注意遇到障碍物时应`break`跳出当前循环 1. 递推路径数 1. 返回`ret[M - 1][N - 1]`
';