Find the Missing Number

最后更新于:2022-04-02 01:14:29

# Find the Missing Number ### Source - lintcode: [(196) Find the Missing Number](http://www.lintcode.com/en/problem/find-the-missing-number/) - [Find the Missing Number - GeeksforGeeks](http://www.geeksforgeeks.org/find-the-missing-number/) ### Problem Given an array contains *N* numbers of 0 .. *N*, find which number doesn't exist in the array. #### Example Given *N* = `3` and the array `[0, 1, 3]`, return `2`. #### Challenge Do it in-place with O(1)O(1)O(1) extra memory and O(n)O(n)O(n) time. ### 题解1 - 位运算 和找单数的题类似,这里我们不妨试试位运算中异或的思路。最开始自己想到的是利用相邻项异或结果看是否会有惊喜,然而发现 `a^(a+1) != a^a + a^1` 之后眼泪掉下来... 如果按照找单数的做法,首先对数组所有元素异或,得到数`x1`, 现在的问题是如何利用`x1`得到缺失的数,由于找单数中其他数都是成对出现的,故最后的结果即是单数,这里每个数都是单数,怎么办呢?我们现在再来分析下如果没有缺失数的话会是怎样呢?假设所有元素异或得到数`x2`, 数`x1`和`x2`有什么差异呢?假设缺失的数是`x0`,那么容易知道`x2 = x1 ^ x0`, 相当于现在已知`x1`和`x2`,要求`x0`. 根据 [Bit Manipulation](http://algorithm.yuanbin.me/zh-cn/basics_misc/bit_manipulation.html) 中总结的交换律,`x0 = x1 ^ x2`. 位运算的题往往比较灵活,需要好好利用常用等式变换。 ### Java ~~~ public class Solution { /** * @param nums: an array of integers * @return: an integer */ public int findMissing(int[] nums) { if (nums == null || nums.length == 0) return -1; // get xor from 0 to N excluding missing number int x1 = 0; for (int i : nums) { x1 ^= i; } // get xor from 0 to N int x2 = 0; for (int i = 0; i <= nums.length; i++) { x2 ^= i; } // missing = x1 ^ x2; return x1 ^ x2; } } ~~~ ### 源码分析 略 ### 复杂度分析 遍历原数组和 N+1大小的数组,时间复杂度 O(n)O(n)O(n), 空间复杂度 O(1)O(1)O(1). ### 题解2 - 桶排序 非常简单直观的想法——排序后检查缺失元素,但是此题中要求时间复杂度为 O(n)O(n)O(n), 因此如果一定要用排序来做,那一定是使用非比较排序如桶排序或者计数排序。题中另一提示则是要求只使用 O(1)O(1)O(1) 的额外空间,那么这就是在提示我们应该使用原地交换。根据题意,元素应无重复,可考虑使用桶排,索引和值一一对应即可。第一重 for 循环遍历原数组,内循环使用 while, 调整索引处对应的值,直至相等或者索引越界为止,for 循环结束时桶排结束。最后再遍历一次数组找出缺失元素。 初次接触这种题还是比较难想到使用桶排这种思想的,尤其是利用索引和值一一对应这一特性找出缺失元素,另外此题在实际实现时不容易做到 bug-free, while 循环处容易出现死循环。 ### Java ~~~ public class Solution { /** * @param nums: an array of integers * @return: an integer */ public int findMissing(int[] nums) { if (nums == null || nums.length == 0) return -1; bucketSort(nums); // find missing number for (int i = 0; i < nums.length; i++) { if (nums[i] != i) { return i; } } return nums.length; } private void bucketSort(int[] nums) { for (int i = 0; i < nums.length; i++) { while (nums[i] != i) { // ignore nums[i] == nums.length if (nums[i] == nums.length) { break; } int nextNum = nums[nums[i]]; nums[nums[i]] = nums[i]; nums[i] = nextNum; } } } } ~~~ ### 源码分析 难点一在于正确实现桶排,难点二在于数组元素中最大值 N 如何处理。N 有三种可能: 1. N 不在原数组中,故最后应该返回 N 1. N 在原数组中,但不在数组中的最后一个元素 1. N 在原数组中且在数组最后一个元素 其中情况1在遍历桶排后的数组时无返回,最后返回 N. 其中2和3在 while 循环处均会遇到 break 跳出,即当前这个索引所对应的值要么最后还是 N,要么就是和索引相同的值。如果最后还是 N, 也就意味着原数组中缺失的是其他值,如果最后被覆盖掉,那么桶排后的数组不会出现 N, 且缺失的一定是 N 之前的数。 综上,这里的实现无论 N 出现在哪个索引都能正确返回缺失值。实现上还是比较巧妙的,所以说在没做过这类题时要在短时间内 bug-free 比较难,当然也可能是我比较菜... 另外一个难点在于如何保证或者证明 while 一定不会出现死循环,可以这么理解,如果 while 条件不成立且未出现`nums.length`这个元素,那么就一定会使得一个元素正确入桶,又因为没有重复元素出现,故一定不会出现死循环。 ### 复杂度分析 桶排时间复杂度 O(n)O(n)O(n), 空间复杂度 O(1)O(1)O(1). 遍历原数组找缺失数时间复杂度 O(n)O(n)O(n). 故总的时间复杂度为 O(n)O(n)O(n), 空间复杂度 O(1)O(1)O(1).
';