Binary Tree Inorder Traversal

最后更新于:2022-04-02 01:11:08

# Binary Tree Inorder Traversal ### Source - leetcode: [Binary Tree Inorder Traversal | LeetCode OJ](https://leetcode.com/problems/binary-tree-inorder-traversal/) - lintcode: [(67) Binary Tree Inorder Traversal](http://www.lintcode.com/en/problem/binary-tree-inorder-traversal/) ~~~ Given a binary tree, return the inorder traversal of its nodes' values. Example Given binary tree {1,#,2,3}, 1 \ 2 / 3 return [1,3,2]. Challenge Can you do it without recursion? ~~~ ### 题解1 - 递归版 中序遍历的访问顺序为『先左再根后右』,递归版最好理解,递归调用时注意返回值和递归左右子树的顺序即可。 ### Python ~~~ """ Definition of TreeNode: class TreeNode: def __init__(self, val): this.val = val this.left, this.right = None, None """ class Solution: """ @param root: The root of binary tree. @return: Inorder in ArrayList which contains node values. """ def inorderTraversal(self, root): if root is None: return [] else: return [root.val] + self.inorderTraversal(root.left) \ + self.inorderTraversal(root.right) ~~~ ### Python - with helper ~~~ # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: # @param {TreeNode} root # @return {integer[]} def inorderTraversal(self, root): result = [] self.helper(root, result) return result def helper(self, root, ret): if root is not None: self.helper(root.left, ret) ret.append(root.val) self.helper(root.right, ret) ~~~ ### C++ ~~~ /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: vector inorderTraversal(TreeNode* root) { vector result; helper(root, result); return result; } private: void helper(TreeNode *root, vector &ret) { if (root != NULL) { helper(root->left, ret); ret.push_back(root->val); helper(root->right, ret); } } }; ~~~ ### Java ~~~ /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public List inorderTraversal(TreeNode root) { List result = new ArrayList(); helper(root, result); return result; } private void helper(TreeNode root, List ret) { if (root != null) { helper(root.left, ret); ret.add(root.val); helper(root.right, ret); } } } ~~~ ### 源码分析 Python 这种动态语言在写递归时返回结果好处理点,无需声明类型。通用的方法为在递归函数入口参数中传入返回结果,也可使用分治的方法替代辅助函数。 ### 复杂度分析 树中每个节点都需要被访问常数次,时间复杂度近似为 O(n)O(n)O(n). 未使用额外辅助空间。 ### 题解2 - 迭代版 使用辅助栈改写递归程序,中序遍历没有前序遍历好写,其中之一就在于入栈出栈的顺序和限制规则。我们采用「左根右」的访问顺序可知主要由如下四步构成。 1. 首先需要一直对左子树迭代并将非空节点入栈 1. 节点指针为空后不再入栈 1. 当前节点为空时进行出栈操作,并访问栈顶节点 1. 将当前指针p用其右子节点替代 步骤2,3,4对应「左根右」的遍历结构,只是此时的步骤2取的左值为空。 ### Python ~~~ # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: # @param {TreeNode} root # @return {integer[]} def inorderTraversal(self, root): result = [] s = [] while root is not None or s: if root is not None: s.append(root) root = root.left else: root = s.pop() result.append(root.val) root = root.right return result ~~~ ### C++ ~~~ /** * Definition of TreeNode: * class TreeNode { * public: * int val; * TreeNode *left, *right; * TreeNode(int val) { * this->val = val; * this->left = this->right = NULL; * } * } */ class Solution { /** * @param root: The root of binary tree. * @return: Inorder in vector which contains node values. */ public: vector inorderTraversal(TreeNode *root) { vector result; stack s; while (!s.empty() || NULL != root) { if (root != NULL) { s.push(root); root = root->left; } else { root = s.top(); s.pop(); result.push_back(root->val); root = root->right; } } return result; } }; ~~~ ### Java ~~~ /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ public class Solution { public List inorderTraversal(TreeNode root) { List result = new ArrayList(); Stack s = new Stack(); while (root != null || !s.empty()) { if (root != null) { s.push(root); root = root.left; } else { root = s.pop(); result.add(root.val); root = root.right; } } return result; } } ~~~ ### 源码分析 使用栈的思想模拟递归,注意迭代的演进和边界条件即可。 ### 复杂度分析 最坏情况下栈保存所有节点,空间复杂度 O(n)O(n)O(n), 时间复杂度 O(n)O(n)O(n). ### Reference
';