Median of two Sorted Arrays
最后更新于:2022-04-02 01:09:14
# Median of two Sorted Arrays
### Source
- leetcode: [Median of Two Sorted Arrays | LeetCode OJ](https://leetcode.com/problems/median-of-two-sorted-arrays/)
- lintcode: [(65) Median of two Sorted Arrays](http://www.lintcode.com/en/problem/median-of-two-sorted-arrays/)
### Problem
There are two sorted arrays *A* and *B* of size *m* and *n* respectively. Find the **median** of the two sorted arrays.
#### Example
Given `A=[1,2,3,4,5,6]` and `B=[2,3,4,5]`, the median is `3.5`.
Given `A=[1,2,3]` and `B=[4,5]`, the median is `3`.
#### Challenge
The overall run time complexity should be O(log (m+n)).
### 题解1 - 归并排序
何谓"Median"? 由题目意思可得即为两个数组中一半数据比它大,另一半数据比它小的那个数。详见 [中位数 - 维基百科,自由的百科全书](http://zh.wikipedia.org/wiki/%E4%B8%AD%E4%BD%8D%E6%95%B8)。简单粗暴的方法就是使用归并排序的思想,挨个比较两个数组的值,取小的,最后分奇偶长度返回平均值或者中位值。
### Java1 - merge sort with equal length
~~~
class Solution {
/**
* @param A: An integer array.
* @param B: An integer array.
* @return: a double whose format is *.5 or *.0
*/
public double findMedianSortedArrays(int[] A, int[] B) {
if ((A == null || A.length == 0) && (B == null || B.length == 0)) {
return -1.0;
}
int lenA = (A == null) ? 0 : A.length;
int lenB = (B == null) ? 0 : B.length;
int len = lenA + lenB;
/* merge sort */
int indexA = 0, indexB = 0, indexC = 0;
int[] C = new int[len];
// case1: both A and B have elements
while (indexA < lenA && indexB < lenB) {
if (A[indexA] < B[indexB]) {
C[indexC++] = A[indexA++];
} else {
C[indexC++] = B[indexB++];
}
}
// case2: only A has elements
while (indexA < lenA) {
C[indexC++] = A[indexA++];
}
// case3: only B has elements
while (indexB < lenB) {
C[indexC++] = B[indexB++];
}
// return median for even and odd cases
int indexM1 = (len - 1) / 2, indexM2 = len / 2;
if (len % 2 == 0) {
return (C[indexM1] + C[indexM2]) / 2.0;
} else {
return C[indexM2];
}
}
}
~~~
### Java2 - space optimization
~~~
class Solution {
/**
* @param A: An integer array.
* @param B: An integer array.
* @return: a double whose format is *.5 or *.0
*/
public double findMedianSortedArrays(int[] A, int[] B) {
if ((A == null || A.length == 0) && (B == null || B.length == 0)) {
return -1.0;
}
int lenA = (A == null) ? 0 : A.length;
int lenB = (B == null) ? 0 : B.length;
int len = lenA + lenB;
int indexM1 = (len - 1) / 2, indexM2 = len / 2;
int m1 = 0, m2 = 0;
/* merge sort */
int indexA = 0, indexB = 0, indexC = 0;
// case1: both A and B have elements
while (indexA < lenA && indexB < lenB) {
if (indexC > indexM2) {
break;
}
if (indexC == indexM1) {
m1 = Math.min(A[indexA], B[indexB]);
}
if (indexC == indexM2) {
m2 = Math.min(A[indexA], B[indexB]);
}
if (A[indexA] < B[indexB]) {
indexA++;
} else {
indexB++;
}
indexC++;
}
// case2: only A has elements
while (indexA < lenA) {
if (indexC > indexM2) {
break;
}
if (indexC == indexM1) {
m1 = A[indexA];
}
if (indexC == indexM2) {
m2 = A[indexA];
}
indexA++;
indexC++;
}
// case3: only B has elements
while (indexB < lenB) {
if (indexC > indexM2) {
break;
}
if (indexC == indexM1) {
m1 = B[indexB];
}
if (indexC == indexM2) {
m2 = B[indexB];
}
indexB++;
indexC++;
}
// return median for even and odd cases
if (len % 2 == 0) {
return (m1 + m2) / 2.0;
} else {
return m2;
}
}
}
~~~
### 源码分析
使用归并排序的思想做这道题不难,但是边界条件的处理比较闹心,使用归并排序带辅助空间的做法实现起来比较简单,代码也短。如果不使用额外空间并做一定优化的话需要多个 if 语句进行判断,需要注意的是多个 if 之间不能使用 else ,因为`indexM1`和`indexM2`有可能相等。
### 复杂度分析
时间复杂度 O(m+n)O(m + n)O(m+n), 空间复杂度为 (m+n)(m + n)(m+n)(使用额外数组), 或者 O(1)O(1)O(1)(不使用额外数组).
### 题解2 - 二分搜索
题中已有信息两个数组均为有序,找中位数的关键在于找到第一半大的数,显然可以使用二分搜索优化。本题是找中位数,其实可以泛化为一般的找第 k 大数,这个辅助方法的实现非常有意义!在两个数组中找第k大数->找中位数即为找第k大数的一个特殊情况——第(A.length + B.length) / 2 大数。因此首先需要解决找第k大数的问题。这个联想确实有点牵强...
由于是找第k大数(从1开始),使用二分法则需要比较A[k/2 - 1]和B[k/2 - 1],并思考这两个元素和第k大元素的关系。
1. A[k/2 - 1] <= B[k/2 - 1] => A和B合并后的第k大数中必包含A[0]~A[k/2 -1],可使用归并的思想去理解。
1. 若k/2 - 1超出A的长度,则必取B[0]~B[k/2 - 1]
### C++
~~~
class Solution {
public:
/**
* @param A: An integer array.
* @param B: An integer array.
* @return: a double whose format is *.5 or *.0
*/
double findMedianSortedArrays(vector A, vector B) {
if (A.empty() && B.empty()) {
return 0;
}
vector NonEmpty;
if (A.empty()) {
NonEmpty = B;
}
if (B.empty()) {
NonEmpty = A;
}
if (!NonEmpty.empty()) {
vector::size_type len_vec = NonEmpty.size();
return len_vec % 2 == 0 ?
(NonEmpty[len_vec / 2 - 1] + NonEmpty[len_vec / 2]) / 2.0 :
NonEmpty[len_vec / 2];
}
vector::size_type len = A.size() + B.size();
if (len % 2 == 0) {
return ((findKth(A, 0, B, 0, len / 2) + findKth(A, 0, B, 0, len / 2 + 1)) / 2.0);
} else {
return findKth(A, 0, B, 0, len / 2 + 1);
}
// write your code here
}
private:
int findKth(vector &A, vector::size_type A_start, vector &B, vector::size_type B_start, int k) {
if (A_start > A.size() - 1) {
// all of the element of A are smaller than the kTh number
return B[B_start + k - 1];
}
if (B_start > B.size() - 1) {
// all of the element of B are smaller than the kTh number
return A[A_start + k - 1];
}
if (k == 1) {
return A[A_start] < B[B_start] ? A[A_start] : B[B_start];
}
int A_key = A_start + k / 2 - 1 < A.size() ?
A[A_start + k / 2 - 1] : INT_MAX;
int B_key = B_start + k / 2 - 1 < B.size() ?
B[B_start + k / 2 - 1] : INT_MAX;
if (A_key > B_key) {
return findKth(A, A_start, B, B_start + k / 2, k - k / 2);
} else {
return findKth(A, A_start + k / 2, B, B_start, k - k / 2);
}
}
};
~~~
### Java
~~~
class Solution {
/**
* @param A: An integer array.
* @param B: An integer array.
* @return: a double whose format is *.5 or *.0
*/
public double findMedianSortedArrays(int[] A, int[] B) {
if ((A == null || A.length == 0) && (B == null || B.length == 0)) {
return -1.0;
}
int lenA = (A == null) ? 0 : A.length;
int lenB = (B == null) ? 0 : B.length;
int len = lenA + lenB;
// return median for even and odd cases
if (len % 2 == 0) {
return (findKth(A, 0, B, 0, len/2) + findKth(A, 0, B, 0, len/2 + 1)) / 2.0;
} else {
return findKth(A, 0, B, 0, len/2 + 1);
}
}
private int findKth(int[] A, int indexA, int[] B, int indexB, int k) {
int lenA = (A == null) ? 0 : A.length;
if (indexA > lenA - 1) {
return B[indexB + k - 1];
}
int lenB = (B == null) ? 0 : B.length;
if (indexB > lenB - 1) {
return A[indexA + k - 1];
}
// avoid infilite loop if k == 1
if (k == 1) return Math.min(A[indexA], B[indexB]);
int keyA = Integer.MAX_VALUE, keyB = Integer.MAX_VALUE;
if (indexA + k/2 - 1 < lenA) keyA = A[indexA + k/2 - 1];
if (indexB + k/2 - 1 < lenB) keyB = B[indexB + k/2 - 1];
if (keyA > keyB) {
return findKth(A, indexA, B, indexB + k/2, k - k/2);
} else {
return findKth(A, indexA + k/2, B, indexB, k - k/2);
}
}
}
~~~
### 源码分析
本题用非递归的方法非常麻烦,递归的方法减少了很多边界的判断。此题的边界条件较多,不容易直接从代码看清思路。首先分析找k大的辅助程序。以 Java 的代码为例。
1. 首先在主程序中排除 A, B 均为空的情况。
1. 排除 A 或者 B 中有一个为空或者长度为0的情况。如果`A_start > A.size() - 1`,意味着A中无数提供,故仅能从B中取,所以只能是B从`B_start`开始的第k个数。下面的B...分析方法类似。
1. k为1时,无需再递归调用,直接返回较小值。如果 k 为1不返回将导致后面的无限循环。
1. 以A为例,取出自`A_start`开始的第`k / 2`个数,若下标`A_start + k / 2 - 1 < A.size()`,则可取此下标对应的元素,否则置为int的最大值,便于后面进行比较,免去了诸多边界条件的判断。
1. 比较`A_key > B_key`,取小的折半递归调用findKth。
接下来分析`findMedianSortedArrays`:
1. 首先考虑异常情况,A, B都为空。
1. A+B 的长度为偶数时返回len / 2和 len / 2 + 1的均值,为奇数时则返回len / 2 + 1
### 复杂度分析
找中位数,K 为数组长度和的一半,故总的时间复杂度为 O(log(m+n))O(\log (m+n))O(log(m+n)).
### Reference
- [九章算法 | Median of Two Sorted Arrays](http://www.jiuzhang.com/solutions/median-of-two-sorted-arrays/)
- [LeetCode: Median of Two Sorted Arrays 解题报告 - Yu's Garden - 博客园](http://www.cnblogs.com/yuzhangcmu/p/4138184.html)
';