圆的世界
最后更新于:2022-04-02 04:09:47
[TOC]
## 单位圆
![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/9d/7e/9d7ea2ff21ce1e986727e0b367e8dda0_800x510.png)
## 弧度与角度
![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/29/a5/29a567bde537c190714b80dc8dd2c32c_800x538.png)
- 360描述角度不够直观;无法和数字产生直接的映射。因此通常我们用弧度(radian)来描述
- `$ radia=\frac{180\circ}{\pi} $`
- 图形学中一般使用radian计算
## 极坐标系
- 由极点(pole)和射线(ray)组成的坐标系。用(角度,射线长度)描述一点
![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/9f/81/9f815142e95cc127e86d3e17cc09f564_400x303.png)
`$ (3,60\circ) $` 半径为3,角度为60度
## 周期性和符号
![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/af/66/af665ed54cccc4adcedec927b12f048e_400x372.png)
- `$ sin\theta = \frac{y}{r} $`
- `$ cos\theta = \frac{x}{r} $`
- `$ sin(\theta+2\pi)=sin(\theta) $`
- `$ cos(\theta+2\pi) =cos(\theta) $`
- `$ cos(-\theta)=cons(\theta) $` 思考 `$ \frac{x}{r} $`
- `$ sin(-\theta) = -sin(\theta) $` 思考 `$ \frac{y}{r} $`
## 旋转
- `$ cos(\theta+\phi) =cc-ss $`
- `$ sin(\theta+\phi) =cs+sc $`
';