学习算法和刷题的框架思维
最后更新于:2022-04-02 04:11:50
[TOC]
## 数据结构的存储方式
数据结构的存储方式只有两种:数组(顺序存储)和链表(链式存储)
其他数据结构都是数组与链表组成
- 「队列」、「栈」这两种数据结构既可以使用链表也可以使用数组实现。用数组实现,就要处理扩容缩容的问题;用链表实现,没有这个问题,但需要更多的内存空间存储节点指针。
- 「图」的两种表示方法,邻接表就是链表,邻接矩阵就是二维数组。邻接矩阵判断连通性迅速,并可以进行矩阵运算解决一些问题,但是如果图比较稀疏的话很耗费空间。邻接表比较节省空间,但是很多操作的效率上肯定比不过邻接矩阵。
- 「散列表」就是通过散列函数把键映射到一个大数组里。而且对于解决散列冲突的方法,拉链法需要链表特性,操作简单,但需要额外的空间存储指针;线性探查法就需要数组特性,以便连续寻址,不需要指针的存储空间,但操作稍微复杂些。
- 「树」,用数组实现就是「堆」,因为「堆」是一个完全二叉树,用数组存储不需要节点指针,操作也比较简单;用链表实现就是很常见的那种「树」,因为不一定是完全二叉树,所以不适合用数组存储。为此,在这种链表「树」结构之上,又衍生出各种巧妙的设计,比如二叉搜索树、AVL 树、红黑树、区间树、B 树等等,以应对不同的问题
### 链表与数组区别
**数组**由于是紧凑连续存储,可以随机访问,通过索引快速找到对应元素,而且相对节约存储空间。但正因为连续存储,内存空间必须一次性分配够,所以说数组如果要扩容,需要重新分配一块更大的空间,再把数据全部复制过去,时间复杂度 O(N);而且你如果想在数组中间进行插入和删除,每次必须搬移后面的所有数据以保持连续,时间复杂度 O(N)。
**链表**因为元素不连续,而是靠指针指向下一个元素的位置,所以不存在数组的扩容问题;如果知道某一元素的前驱和后驱,操作指针即可删除该元素或者插入新元素,时间复杂度 O(1)。但是正因为存储空间不连续,你无法根据一个索引算出对应元素的地址,所以不能随机访问;而且由于每个元素必须存储指向前后元素位置的指针,会消耗相对更多的储存空间。
## 数据结构的基本操作
数据结构种类很多,但它们存在的目的都是在不同的应用场景,尽可能高效地增删查改。
数组遍历框架,典型的线性迭代结构
```
void traverse(int[] arr) {
for (int i = 0; i < arr.length; i++) {
// 迭代访问 arr[i]
}
}
```
链表遍历框架,兼具迭代和递归结构
```
/* 基本的单链表节点 */
class ListNode {
int val;
ListNode next;
}
void traverse(ListNode head) {
for (ListNode p = head; p != null; p = p.next) {
// 迭代访问 p.val
}
}
void traverse(ListNode head) {
// 递归访问 head.val
traverse(head.next)
}
```
二叉树遍历框架
```
/* 基本的二叉树节点 */
class TreeNode {
int val;
TreeNode left, right;
}
void traverse(TreeNode root) {
traverse(root.left)
traverse(root.right)
}
```
N 叉树的遍历框架
```
/* 基本的 N 叉树节点 */
class TreeNode {
int val;
TreeNode[] children;
}
void traverse(TreeNode root) {
for (TreeNode child : root.children)
traverse(child);
}
```
### 刷题先刷二叉树
二叉树的题目都是一套这个框架就出来了
```
void traverse(TreeNode root) {
// 前序遍历
traverse(root.left)
// 中序遍历
traverse(root.right)
// 后序遍历
}
```
如:二叉树中最大路径和
```
int ans = INT_MIN;
int oneSideMax(TreeNode* root) {
if (root == nullptr) return 0;
int left = max(0, oneSideMax(root->left));
int right = max(0, oneSideMax(root->right));
ans = max(ans, left + right + root->val);
return max(left, right) + root->val;
}
```
如:恢复一棵 BST
```
void traverse(TreeNode* node) {
if (!node) return;
traverse(node->left);
if (node->val < prev->val) {
s = (s == NULL) ? prev : s;
t = node;
}
prev = node;
traverse(node->right);
}
```
';