向量的叉积与点积
最后更新于:2022-04-02 04:09:44
[TOC]
## 向量叉积
### 2d-向量叉积
`$ (x_{1},y_{1})\times(x_{2},y_{2})= \begin{vmatrix} x_{1} & x_{2} \\ y_{1} & y_{2} \\ \end{vmatrix} =x_{1}y_{2}-x_{2}y_{1} $`
中间的`$ \begin{vmatrix} x_{1} & x_{2} \\ y_{1} & y_{2} \\ \end{vmatrix} $`称为行列式
如:
`(1,0)x(0,1)=1-0=1`
`(0,1)x(1,0)=0-1=-1`
叉积在坐标系中就是两个向量的面积
#### 叉积的几何定义
`$ \vec{a} \times \vec{b} = \left | \vec{a} \right | \times \left | \vec{b} \right | \times sine \theta $`
### 3d -向量叉积
![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/0d/e3/0de32461040be688c2969e93a87cce50_800x364.png)
### 行列式求值
推荐网站 https://matrix.reshish.com/determinant.php
![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/e4/35/e4351e6147fa455fc3f721d8d7aefa60_184x96.png)
![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/ce/55/ce555d0d2b5bbc9d419e3a7ae8828bdd_406x104.png)
行列式 `|A| = a(ei - fh) - b(di - fg) + c(dh - eg)`
- 把 a 乘以不在 a 的行或列上的 2×2 矩阵的行列式
- 以 b 和 c 也做相同的计算
- 把结果加在一起,不过 b 前面有个负号
## 向量点积
公式: `$ (x_{1},y_{1}) \cdot (x_{x},y_{2}) =x_{1}y_{2}+x_{2}y_{2} $`
如:
```
(1,0)*(0,1)=0
(2,0)*(2,0)=4
(1,2)*(2,1)=4
```
![](https://docs.gechiui.com/gc-content/uploads/sites/kancloud/73/1d/731d4354dcde93808f43d56f7196284a_400x383.png)
规律: `$ a \cdot b = \left | a \right | \left | b \right | cos \theta $`
a,b是两个向量,`$ \theta $`是a、b的夹角;也就是a在b上的投影长度和b相乘
';